首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
目的:制备载胰高血糖素样肽-1(GLP-1)的长效注射微球,并对微球的体外释放特性和生物活性进行考察。方法:采用复乳法(w/o/w)制备了载GLP-1的聚乳酸-乙醇酸嵌段共聚物(PLGA)微球;考察微球的粒径大小、外观、包封率等理化特性和体外释放特性;采用在体动物法评价了微球制备工艺和体外释放过程中GLP-1的生物学活性。结果:外水相中NaCl浓度为15%(w/v)时微球包封率在85%以上,微球圆整,表面致密,平均粒径30μm。使用低黏度PLGA并在油相中加入10%(w/w)的PEG 6000,显著提高了药物在1个月内的累积释放,可达83%。微球的制备工艺不影响GLP-1的生物学活性,在体外释放过程中GLP-1的生物学活性明显下降。结论:用可生物降解的聚合物PLGA作为载体材料,可以将GLP-1制备成缓释1个月的注射微球。  相似文献   

2.
胰高血糖素样肽-1长效注射微球的研究   总被引:1,自引:1,他引:1  
尹东锋  吴诚  鲁莹  朱艳  钟延强 《药学学报》2006,41(7):603-607
目的制备载胰高血糖素样肽-1(GLP-1)的长效注射微球,并对其体外释放特性及药效学进行考察。方法采用复乳法(W/O/W)制备载GLP-1聚乳酸-羟基乙酸嵌段共聚物(PLGA)的微球;考察微球的粒径大小、外观及包封率等理化特性;以HPLC法测定微球的体外释放速率;在体动物法评价微球制备工艺和体外释放过程中GLP-1的生物学活性。在糖尿病模型小鼠体内考察了微球的降血糖作用。结果微球球形圆整,分散性好,包封率在80%以上;GLP-1微球1个月的体外累积释放可达85%,其释放行为符合近似零级释放模式;使用明胶溶液作为内水相,较好地保持了制备工艺过程中的GLP-1生物学活性,在体外释放过程中GLP-1的生物学活性略有下降;GLP-1微球可显著降低糖尿病模型小鼠的血糖水平,降糖作用可维持1个月。结论用可生物降解的聚合物PLGA作为载体材料,可以将GLP-1制备成缓释1个月的注射微球。  相似文献   

3.
目的 制备牛血清白蛋白(BSA)口服阳离子微球,考察天然阳离子物质壳聚糖(CHS)的加入对蛋白微球的粒径、电动电势、包封率、载药量及体外释放情况的影响。方法 以乳酸/羟基乙酸共聚物(PLGA)和壳聚糖(CHS)为载体材料,采用W/O/W复乳-溶剂挥发法制备牛血清白蛋白乳酸/羟基乙酸共聚物-壳聚糖(PLGA/CHS)阳离子微球。通过正交设计优化制备工艺,确定最佳处方。建立准确而简便的蛋白含量测定方法,并对微球进行体外评价。结果 最佳处方为:BSA浓度为150 g·L-1、PLGA浓度为8%、外水相体积为80 mL、壳聚糖浓度为0.2%。制得的微球形态圆整,平均粒径为(6.9±5.5)μm,为表面荷正电的阳离子微球[ζ电势=(10.0±0.6)mV],包封率为(75.4±4.6)%,载药量为(9.3±0.2)%。体外释放结果表明,在模拟胃液和模拟肠液中,壳聚糖的加入均能减少突释,延缓药物的释放。结论 与PLGA微球相比,制得的PLGA/CHS阳离子微球表面带正电,具有较高的包封率和载药量,可以延缓药物释放,同时减少突释现象。  相似文献   

4.
目的考察微球载体材料聚乳酸-羟基乙酸共聚物(poly-lactic-co-glycolic acid,PLGA)和聚乳酸(poly(D,L-lactide acid),PLA)的不同封端基团对于包载醋酸曲普瑞林(triptorelin acetate,TA)微球的形态、粒径、包封率、体外释放行为以及体内药效学的影响。方法使用复乳化-溶剂挥发法制备包载TA的PLGA和PLA微球;用扫描电镜观察微球的形态,用激光粒度测定仪测定微球的粒径;建立高效液相色谱法(HPLC)用于TA包封率及体外释放度的测定;采用酶联-免疫吸附法考察了微球经肌肉注射后对正常雄性Sprague Dawley大鼠血浆睾酮浓度的影响。结果制备得到的微球形态为球形或类球形,平均粒径约为30μm。PLGA和PLA,尤其是PLGA,其分子末端基团对TA的包封率和体外释放速率均有影响。酯封端的PLGA微球的包封率显著高于酸封端的微球,而酯封端的释放速度要慢于酸封端。体内药效学实验结果显示,大鼠体内睾酮水平在注射微球后两个小时达到峰值,之后逐渐下降,不同微球之间无显著性差异。结论不同封端结尾的PLGA和PLA对微球形态、包封率和体外释药速率有显著影响,但对正常大鼠体内睾酮水平的影响没有显著性差异。  相似文献   

5.
徐岩  陈仲清  余让辉  李国锋  王晓俏 《医药导报》2009,28(11):1427-1431
目的 制备罗哌卡因 醋酸地塞米松聚乳酸羟基乙酸共聚物(PLGA)微球(简称微球)并研究其体外释药特性。方法以PLGA为载体,采用W1/O/W2双重乳化 溶剂挥发法制备微球,研究实验过程中有机相PLGA浓度、外水相/有机相体积比、内水相体积、外水相聚乙烯醇(PVA)浓度几项因素变化对罗哌卡因 醋酸地塞米松PLGA微球粒径、表面形态﹑载药量﹑包封率和突释行为的影响。结果有机相PLGA浓度在制备微球的过程中是一个关键性因素。随着PLGA浓度增加,微球粒径增大,载药量﹑包封率明显提高,突释降低;外水相/有机相体积比增大,微球粒径增大, 载药量﹑包封率明显提高,微球表面更加光滑﹑微孔减少,突释降低;随着内水相体积增加使得微球表面的微孔明显增多,突释增加,载药量﹑包封率降低;当外水相PVA浓度由0.5%增加到2%,微球粒径变小,突释效应增加。通过优化条件制备的微球形状为球形,外观光滑圆整,粒径分布均匀,其中>90%分布在20~70 μm。罗哌卡因载药量(7.48±0.33)%,包封率(70.97±2.36)%;醋酸地塞米松载药量(1.52±0.16)%,包封率(57.30±1.17)%。结论采用W1/O/W2双重乳化 溶剂挥发法成功制备罗哌卡因加醋酸地塞米松PLGA微球;以优化工艺制备的微球,在体外具有明显的缓释行为,释药曲线呈典型S形三阶段模式。  相似文献   

6.
PLGA包埋硫酸庆大霉素缓释微球的制备及体外释放行为   总被引:7,自引:0,他引:7  
谭红香  叶建东 《中国抗生素杂志》2007,32(11):682-684,696
以生物可降解乙交酯和丙交酯的无规共聚物(PLGA)为载体,将硫酸庆大霉素分散在PLGA的有机溶液中,采用复乳溶剂挥发法制备了药物缓释微球。研究搅拌速度、PLGA浓度、乳化剂浓度和硫酸庆大霉素溶液体积对微球粒径的影响,观察微球的表面形貌,测定微球粒径、粒径分布和包封率,评价载药微球的体外释放行为。结果表明,采用甲基纤维素为乳化剂制备的微球形态完整,中粒径为(130±30)μm,微球中硫酸庆大霉素的包封率均在36%以上,平均42%,最高达56%。硫酸庆大霉素/PLGA微球具有显著的药物缓释作用,体外释放30d的累积释药率达80%以上。  相似文献   

7.
目的制备蛋白的海藻酸-壳聚糖-聚乳酸羟乙醇酸(PLGA)复合微球,以增加蛋白药物的包封率、减少突释和不完全释放。方法以牛血清白蛋白为模型药物采用修饰的乳化、醇洗法制备小粒径海藻酸微囊,再以壳聚糖孵育制得海藻酸-壳聚糖双层微囊,并进一步用PLGA包裹制得复合微球。采用微量BCA试剂盒测定蛋白浓度,考察其包封率及释放行为,改变各种制备因素调节微球的释放特性。结果复合微球粒径约30 μm,形态圆整。与单纯PLGA微球相比,包封率由60%-70%上升至80%以上。复合微球在磷酸盐缓冲液的1 h突释量由40%-50%下降至25%以下,在生理盐水中则进一步下降至5%以下。结论海藻酸-壳聚糖-PLGA复合微球提高了蛋白药物的包封率,减少了药物的突释,并可通过调节PLGA比例调节药物的释放。  相似文献   

8.
目的:考察制备工艺对托特罗定微球的体外性质的影响。方法:采用O/W溶剂挥发法制备托特罗定聚乳酸-羟基乙酸共聚物[poly(lactic-co-glycolic acid),PLGA]微球,采用扫描电镜,差示扫描量热分析,红外光谱对微球进行定性分析,并对微球的粒径、包封率和体外释放率等性质进行了考察。结果:托特罗定微球光滑圆整,粒径均一。PLGA相对分子质量对微球的包封率和体外释放度影响较大。脂肪酸能显著改善微球的包封率,但是对体外释放的影响有限。结论:制备工艺参数的变化对托特罗定PLGA微球体外性质影响显著。  相似文献   

9.
胸腺肽α1缓释注射微球的研究   总被引:2,自引:0,他引:2  
朱艳  鲁莹  钟延强 《药学学报》2007,42(2):211-215
制备胸腺肽α1(Tα1)的长效注射微球,并对微球的体外释放特性、体外活性及药效学进行考察。采用复乳法(W/O/W)制备了载Tα1聚乳酸-羟基乙酸嵌段共聚物(PLGA)的微球;考察微球的粒径大小、外观及包封率等理化特性;以HPLC法测定微球的体外释放速率;采用CCK-8法评价微球制备工艺和体外释放过程中Tα1的生物学活性;体内药效学研究中采用流式细胞仪检测免疫抑制模型大鼠给予Tα1微球后所产生的CD4+,CD8+因子的量,根据CD4+/CD8+的比值变化评价体内药效。微球球形圆整,分散性好,两个优选处方(外水相中加入5%氯化钠和10%葡萄糖)的微球包封率分别为87.8%和90.2%;Tα1微球1个月的体外累积释放可达90%以上。使用含10%葡萄糖的PVA溶液作为外水相,较好地保持了制备工艺过程中的Tα1生物学活性,在体外释放过程中Tα1的生物学活性略有下降;Tα1微球可显著提高免疫抑制模型小鼠的免疫力。用可生物降解的聚合物PLGA作为载体材料,可以将Tα1制备成缓释1个月的注射微球。  相似文献   

10.
目的:制备塞来昔布聚乳酸-羟基乙酸共聚物(PLGA)载药微球,优化其处方和制备工艺,考察其体外释药行为。方法:分别以油相中PLGA浓度、水相PVA浓度和油/水相体积比为考察因素,以包封率为考察指标,采用Box-Behnken效应面法优化塞来昔布微球的处方和工艺;透析袋法评估其体外释放能力。结果:塞来昔布PLGA微球的最佳处方工艺条件为:PLGA浓度75 g·L-1,水相PVA体积分数1.5%,油/水相体积比1∶30。所制备的微球形态圆整,大小均一,实测包封率为66.1%,与预测值67.3%相比,偏差为1.8%。最优处方体外14 d累积释药56%,体外释放曲线符合Higuchi方程。结论:Box-Behnken效应面法简便可行,可用于优化塞来昔布PLGA微球的制备,微球体外释放具有缓释效果。  相似文献   

11.
The aim of this study is to prepare poly(lactic-co-glycolic acid) (PLGA) microspheres containing a staphylokinase variant K35R (DGR) with purpose of preserving the protein stability during both encapsulation and drug release. DGR-loaded microspheres are fabricated using a double-emulsion solvent extraction technique. Prior to encapsulation, the effect of ultrasonication emulsification of DGR solutions with methylene chloride on protein recovery was investigated. Moderate ultrasonic treatment of aqueous DGR/dichloromethane mixtures caused approximately 84% DGR aggregation. Polyvinyl alcohol (PVA) added into aqueous DGR solutions significantly improved DGR recovery to >90%. The effects of co-encapsulated PVA and NaCl in the external aqueous phase on the characteristics of the microspheres were investigated. When 2% PVA was co-encapsulated and 2.5% NaCl was added to the external water phase, DGR encapsulation efficiency was significantly increased from 7.1% to 78.1% and DGR was distributed uniformly throughout the microspheres. In vitro release test showed that DGR was released from PLGA microspheres in a sustained manner over 15 days. A large amount of released DGR was inactive in the absence of co-encapsulated PVA. On the contrary, when 2% PVA was co-encapsulated, the released DGR was almost completely intact within 9 days. In conclusion, PLGA microspheres can be an effective carrier for DGR and form a promising depot system.  相似文献   

12.
This study investigated the influence of osmotic pressure in the organic solvent extraction phase on release profile of bovine serum albumin (BSA) from poly(lactide-co-glycolide) (PLGA) microspheres. BSA-loaded PLGA microspheres with a target load of 10% were prepared by a double emulsion phase separation method. All the microsphere batches were fabricated in the same conditions except that in the organic solvent (CH2Cl2) evaporation step. Different concentrations of NaCl (0, 1.8, and 3.6%) or sucrose (20%) were used to generate a range of osmotic pressures in the extraction aqueous phase. These microspheres were characterized for incorporation efficiency, surface and internal morphology, particle size, protein stability, and in vitro release. The microspheres were spherical with particle size ranging from 16.8 to 27.8 microns. Higher osmotic pressure resulted in a denser internal structure although similar nonporous surface morphology was observed with all batches. No significant difference in encapsulation efficiency existed from batch to batch (87-94%). Sodium dodecyl sulfate-polyamide gel electrophoresis showed that BSA integrity was well retained. The release profile of the batch prepared with only water as the continuous (solvent extraction) phase exhibited a 79% burst release in the first 24 hr followed by a plateau and then a little release after 21 days. In the presence of NaCl or sucrose, the burst effect significantly decreased with increase in osmotic pressure in the extraction aqueous phase, which was then followed by sustained release for 35 days. A mass balance was made when the release terminated. Therefore, in the organic solvent extraction and evaporation step, increasing the osmotic pressure in the aqueous phase both reduced the burst release from the microspheres and improved the subsequent sustained release profile.  相似文献   

13.
Biodegradable poly(lactic-co-glycolic acid) (PLGA) microspheres for the sustained release of low molecular weight heparin (LMWH) were prepared by a soild-in-oil-in-water (s/o/w) emulsion method. Prior to encapsulation, the LMWH micro-particles were fabricated by a modified freezing-induced phase separation method. The micro-particles were subsequently encapsulated into PLGA microspheres. Process optimization revealed that the NaCl concentration in the outer phase of s/o/w emulsion played a critical role in determining the properties of the microspheres. When the NaCl concentration increased from 0% to 5%, the encapsulation efficiency significantly increased from 51.5% to 76.8%. The initial burst release also decreased from 37.3% to 12.4%. In?vitro release tests showed that LMWH released from PLGA microspheres in a sustained manner for about 14 days. Single injection of LMWH-loaded PLGA microspheres into rabbits resulted in an elevation of an anti-factor Xa activity for about 6 days. Furthermore, the integrity of the encapsulated LMWH was preserved during encapsulation process.  相似文献   

14.
Biodegradable poly(lactic-co-glycolic acid) (PLGA) microspheres for the sustained release of low molecular weight heparin (LMWH) were prepared by a soild-in-oil-in-water (s/o/w) emulsion method. Prior to encapsulation, the LMWH micro-particles were fabricated by a modified freezing-induced phase separation method. The micro-particles were subsequently encapsulated into PLGA microspheres. Process optimization revealed that the NaCl concentration in the outer phase of s/o/w emulsion played a critical role in determining the properties of the microspheres. When the NaCl concentration increased from 0% to 5%, the encapsulation efficiency significantly increased from 51.5% to 76.8%. The initial burst release also decreased from 37.3% to 12.4%. In vitro release tests showed that LMWH released from PLGA microspheres in a sustained manner for about 14 days. Single injection of LMWH-loaded PLGA microspheres into rabbits resulted in an elevation of an anti-factor Xa activity for about 6 days. Furthermore, the integrity of the encapsulated LMWH was preserved during encapsulation process.  相似文献   

15.
The aim of this study was to prepare recombinant human erythropoietin (rhEPO) loaded poly(lactic-co-glycolic acid) (PLGA) microspheres using human serum albumin (HSA) as a stabilizer. Prior to encapsulation, the rhEPO-HSA mixture microparticles were fabricated using a modified freezing-induced phase separation method. The microparticles were subsequently encapsulated into PLGA microspheres. Process optimization revealed that the polymer concentration in the organic phase and the sodium chloride (NaCl) concentration in the outer water phase of the s/o/w emulsion played critical roles in determining the properties of the resultant microspheres. An in vitro release test showed that rhEPO was released from PLGA microspheres in a sustained manner up to 30 days. A single injection of rhEPO-loaded PLGA microspheres in Sprague-Dawley rats resulted in elevated hemoglobin and red blood cell concentrations for about 33 days. The stability of the rhEPO within the PLGA microspheres was systematically investigated by size-exclusion high-performance liquid chromatography (SEC-HPLC), SDS-PAGE, western blot and in vivo biological activity assay. The stability of rhEPO released from rhEPO-loaded microspheres was also examined by western blot. The results suggested that the integrity of rhEPO was successfully protected during the encapsulation process and the release period from polymeric matrices.  相似文献   

16.
To develop a long-acting injectable huperzine A-PLGA microsphere for the chronic therapy of Alzheimer's disease, the microsphere was prepared by using an o/w emulsion solvent extraction evaporation method based on a series of formulation design of the emulsion. The dialysis method was used for release analysis. The encapsulation efficiency and release amount of the microspheres were determined by a UV/VIS spectrophotometer. The morphology of the microspheres was observed by scanning electron microscopy. The distribution of the drug within microspheres was observed by a confocal laser scanning microscope. The results indicated that the PLGA 15,000 microspheres possessed a smooth and round appearance with average particle size of 50 microm or so. The encapsulation percentages of microspheres prepared from PLGA 15,000, 20,000 and 30,000 were 62.75%, 27.52% and 16.63%, respectively. The drug release percentage during the first day decreased from 22.52% of PLGA 30,000 microspheres to 3.97% of PLGA 15,000 microspheres, the complete release could be prolonged to 3 weeks. The initial burst release of microspheres with higher molecular weight PLGA could be explained by the inhomogeneous distribution of drug within microspheres. The encapsulation efficiency of the microspheres improved as the polymer concentration increased in the oil phase and PVA concentration decreased in the aqueous phase. The burst release could be controlled by reducing the polymer concentration. Evaporation temperature had a large effect on the drug release profiles. It had better be controlled under 30 degrees C. Within a certain range of particle size, encapsulation efficiency decreased and drug release rate increased with the reducing of the particle size.  相似文献   

17.
To develop a long-acting injectable huperzine A-PLGA microsphere for the chronic therapy of Alzheimer's disease, the microsphere was prepared by using o/w emulsion solvent extraction evaporation method based on a series of formulation design of the emulsion. The dialysis method was used for release analysis. The encapsulation efficiency and release amount of the microspheres were determined by UV/VIS spectrophotometry. The morphology of the microspheres was observed by scanning electron microscopy. The distribution of the drug within microspheres was observed by a confocal laser scanning microscope. The results indicated that the PLGA 15 000 microspheres possessed a smooth and round appearance with average particle size of 50 microm or so. The encapsulation percentages of microspheres prepared from PLGA 15 000, 20 000 and 30 000 were 62.75, 27.52 and 16.63%, respectively. The drug release percentage during the first day decreased from 22.52% of PLGA 30 000 microspheres to 3.97% of PLGA 15 000 microspheres, the complete release could be prolonged to 3 weeks. The initial burst release of microspheres with higher molecular weight PLGA could be explained by the inhomogeneous distribution of drug within microspheres. The encapsulation efficiency of the microspheres improved as the polymer concentration increase in oil phase and PVA concentration decreased in aqueous phase. The burst release could be controlled by reducing the polymer concentration. Evaporation temperature had a large effect on the drug release profiles. It had better be controlled under 30 degrees C. Within a certain range of particle size, encapsulation efficiency decreased and drug release rate increased with the reducing of the particle size.  相似文献   

18.
To develop a long-acting injectable huperzine A-PLGA microsphere for the chronic therapy of Alzheimer's disease, the microsphere was prepared by using an o/w emulsion solvent extraction evaporation method based on a series of formulation design of the emulsion. The dialysis method was used for release analysis. The encapsulation efficiency and release amount of the microspheres were determined by a UV/VIS spectrophotometer. The morphology of the microspheres was observed by scanning electron microscopy. The distribution of the drug within microspheres was observed by a confocal laser scanning microscope. The results indicated that the PLGA 15?000 microspheres possessed a smooth and round appearance with average particle size of 50?µm or so. The encapsulation percentages of microspheres prepared from PLGA 15?000, 20?000 and 30?000 were 62.75%, 27.52% and 16.63%, respectively. The drug release percentage during the first day decreased from 22.52% of PLGA 30?000 microspheres to 3.97% of PLGA 15?000 microspheres, the complete release could be prolonged to 3 weeks. The initial burst release of microspheres with higher molecular weight PLGA could be explained by the inhomogeneous distribution of drug within microspheres. The encapsulation efficiency of the microspheres improved as the polymer concentration increased in the oil phase and PVA concentration decreased in the aqueous phase. The burst release could be controlled by reducing the polymer concentration. Evaporation temperature had a large effect on the drug release profiles. It had better be controlled under 30°C. Within a certain range of particle size, encapsulation efficiency decreased and drug release rate increased with the reducing of the particle size.  相似文献   

19.
A modified w/o/w emulsion solvent evaporation technique was adopted to prepare human Chorionic Gonadotropin (hCG)-loaded polylactide (PLA) or poly(lactide-co-glycolide) (PLGA) microspheres. The effects of preparative parameters, such as stirring rate, polymer MW and concentration, and the composition of both the inner aqueous phase and oil phase etc., on hCG entrapment efficiency and microsphere characteristics were investigated. It was found that by adding 20% glycerol into the inner aqueous phase and 40% acetone into the oil phase, smooth microspheres approximately 1 microm in diameter could be produced with high hCG entrapment efficiency (>90%). In vitro release test showed a burst release of hCG from PLGA (75:25) microspheres, followed by sustained release of 55% hCG over 2 months. The initial hCG burst from PLGA microspheres increased with the glycerol concentration in the inner aqueous phase, but decreased to a low value (ca. 20%) with the addition of acetone into the oil phase, which could be attributed to the associated changes in surface morphology of the microspheres. In vivo experiments demonstrated that a single shot of hCG-loaded PLGA microspheres could produce a comparable antibody response with the inoculation of free hCG four times.  相似文献   

20.
A modified w/o/w emulsion solvent evaporation technique was adopted to prepare human Chorionic Gonadotropin (hCG)-loaded polylactide (PLA) or poly(lactide-co-glycolide) (PLGA) microspheres. The effects of preparative parameters, such as stirring rate, polymer MW and concentration, and the composition of both the inner aqueous phase and oil phase etc., on hCG entrapment efficiency and microsphere characteristics were investigated. It was found that by adding 20% glycerol into the inner aqueous phase and 40% acetone into the oil phase, smooth microspheres 1mum in diameter could be produced with high hCG entrapment efficiency (>90%). In vitro release test showed a burst release of hCG from PLGA (75:25) microspheres, followed by sustained release of 55% hCG over 2 months. The initial hCG burst from PLGA microspheres increased with the glycerol concentration in the inner aqueous phase, but decreased to a low value (ca. 20%) with the addition of acetone into the oil phase, which could beattributed to the associated changes in surface morphology of the microspheres. In vivo experiments demonstrated that a single shot of hCG-loaded PLGA microspheres could produce a comparable antibody response with the inoculation of free hCG four times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号