首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neurokinins (NK) released from terminals of dorsal root ganglion (DRG) neurons may control firing of these neurons by an autofeedback mechanism. In this study we used patch clamp recording techniques to determine if NKs alter excitability of rat L4-S3 DRG neurons by modulating K+ currents. In capsaicin (CAPS)-responsive phasic neurons substance P (SP) lowered action potential (AP) threshold and increased the number of APs elicited by depolarizing current pulses. SP and a selective NK2 agonist, [βAla8]-neurokinin A (4–10) also inhibited low threshold inactivating K+ currents isolated by blocking non-inactivating currents with a combination of high TEA, (−) verapamil and nifedipine. Currents recorded under these conditions were heteropodatoxin-sensitive (Kv4 blocker) and α-dendrotoxin-insensitive (Kv1.1 and Kv1.2 blocker). SP and NKA elicited a > 10 mV positive shift of the voltage dependence of activation of the low threshold currents. This effect was absent in CAPS-unresponsive neurons. The effect of SP or NKA on K+ currents in CAPS-responsive phasic neurons was fully reversed by an NK2 receptor antagonist (MEN10376) but only partially reversed by a PKC inhibitor (bisindolylmaleimide). An NK1 selective agonist ([Sar9, Met11]-substance P) or direct activation of PKC with phorbol 12,13-dibutyrate, did not change firing in CAPS-responsive neurons, but did inhibit various types of K+ currents that activated over a wide range of voltages. These data suggest that the excitability of CAPS-responsive phasic afferent neurons is increased by activation of NK2 receptors and that this is due in part to inhibition and a positive voltage shift in the activation of heteropodatoxin-sensitive Kv4 channels.  相似文献   

2.
Trigeminal neuropathic pain is the most debilitating pain disorder but current treatments including opiates are not effective. A common symptom of trigeminal neuropathic pain is cold allodynia/hyperalgesia or cold hypersensitivity in orofacial area, a region where exposure to cooling temperatures are inevitable in daily life. Mechanisms underlying trigeminal neuropathic pain manifested with cold hypersensitivity are not fully understood. In this study, we investigated trigeminal neuropathic pain in male rats following infraorbital nerve chronic constrictive injury (ION-CCI). Assessed by the orofacial operant behavioral test, ION-CCI animals displayed orofacial cold hypersensitivity. The cold hypersensitivity was associated with the hyperexcitability of small-sized trigeminal ganglion (TG) neurons that innervated orofacial regions. Furthermore, ION-CCI resulted in a reduction of A-type voltage-gated K+ currents (IA currents) in these TG neurons. We further showed that these small-sized TG neurons expressed Kv4.3 voltage-gated K+ channels, and Kv4.3 expression in these cells was significantly downregulated following ION-CCI. Pharmacological inhibition of Kv4.3 channels with phrixotoxin-2 inhibited IA-currents in these TG neurons and induced orofacial cold hypersensitivity. On the other hand, pharmacological potentiation of Kv4.3 channels amplified IA currents in these TG neurons and alleviated orofacial cold hypersensitivity in ION-CCI rats. Collectively, Kv4.3 downregulation in nociceptive trigeminal afferent fibers may contribute to peripheral cold hypersensitivity following trigeminal nerve injury, and Kv4.3 activators may be clinically useful to alleviate trigeminal neuropathic pain.SIGNIFICANCE STATEMENT Trigeminal neuropathic pain, the most debilitating pain disorder, is often triggered and exacerbated by cooling temperatures. Here, we created infraorbital nerve chronic constrictive injury (ION-CCI) in rats, an animal model of trigeminal neuropathic pain to show that dysfunction of Kv4.3 voltage-gated K+ channels in nociceptive-like trigeminal ganglion (TG) neurons underlies the trigeminal neuropathic pain manifested with cold hypersensitivity in orofacial regions. Furthermore, we demonstrate that pharmacological potentiation of Kv4.3 channels can alleviate orofacial cold hypersensitivity in ION-CCI rats. Our results may have clinical implications in trigeminal neuropathic pain in human patients, and Kv4.3 channels may be an effective therapeutic target for this devastating pain disorder.  相似文献   

3.
Proper expression of synaptic NMDA receptors (NMDARs) is necessary to regulate synaptic Ca2+ influx and the induction the long-term potentiation (LTP) in the mammalian hippocampus. Previously we reported that expressing the A-type K+ channel subunit Kv4.2 in CA1 neurons of organotypic slice cultures reduced synaptic NR2B-containing NMDAR expression and completely blocked LTP induced by a pairing protocol. As pretreatment with an NMDAR antagonist (APV) overnight blocked the reduction of NR2B-containing receptors in neurons expressing EGFP-labeled Kv4.2 (Kv4.2g), we hypothesized that LTP would be rescued in Kv4.2g neurons by overnight treatment with APV. We report here that the overnight APV pretreatment in Kv4.2g-expressing neurons only partially restored potentiation. This partial potentiation was completely blocked by inhibition of the CAMKII kinase. These results indicate that A-type K+ channels must regulate synaptic integration and plasticity through another mechanism in addition to their regulation of synaptic NR2 subunit composition. We suggest that dendritic excitability, which is regulated by Kv4.2 expression, also contributes to synaptic plasticity.  相似文献   

4.
In order to confirm the species-specific distribution of voltage-gated K+ (Kv) channels and the definitive relationship between their immunoreactivities and seizure activity, we investigated Kv2.x, Kv3.x and Kv4.x channel immunoreactivities in the hippocampi of seizure-resistant (SR) and seizure-sensitive (SS) gerbils. There was no difference in Kv2.1, Kv3.4, Kv4.2 and Kv4.3 immunoreactivity in the hippocampus between SR and SS gerbils. In comparison to SR gerbils, Kv3.1b immunoreactivity in neurons was significantly lower in SS gerbils instead Kv3.1b-immunoreactive astrocytes were clearly observed in SS gerbils (p < 0.05). Kv3.2 immunoreactivity was also significantly lower in neurons of SS gerbils than in those of SR gerbils (p < 0.05). Considering the findings of our previous study, these findings suggest that delayed rectifier K+ channels (Kv1.1, Kv1.2, Kv1.5, Kv1.6, Kv2.1 and Kv3.1-2), not A-type K+ channels (Kv1.4, Kv3.4 and Kv4.x), may be down-regulated in the SS gerbil hippocampus, as compared to SR gerbils.  相似文献   

5.
Tissue sections and antibodies selectively recognizing isoforms of the α subunit of the Na+/K+ pump were used to determine the expression of α1, α2 and α3 pump isoforms in the plasma membrane of adult rat dorsal root ganglia (DRG) neurons. There was no detectable membrane signal from DRG neurons that were probed with antibodies to the α2 isoform of the Na+/K+ pump. The α1 isoform of the Na+/K+ pump was found in most (77±4%) studied DRG neurons, regardless of cell size. Only 16±7% of the neurons expressed a detectable level of the α3 Na+/K+ pump and all were apparently from a subpopulation of large DRG neurons. Comparison of cell size distributions and a study of neurons identified in serial sections suggested that of the α3 positive DRG neurons about 75% coexpressed the α1 isoform of the Na+/K+ pump. These data show that the expression of the protein of the α subunit isoforms of the Na+/K+ pump is not uniform throughout the population of DRG neurons and that α1 is the predominant isoform in the plasma membrane of these neurons.  相似文献   

6.
The delayed‐rectifier K+ channel Kv2.1 exists in highly phosphorylated somatodendritic clusters. Ischemia induces rapid Kv2.1 dephosphorylation and a dispersal of these clusters, accompanied by a hyperpolarizing shift in their voltage‐dependent activation kinetics. Transient modulation of Kv2.1 activity and localization following ischemia is dependent on a rise in intracellular Ca2+and the protein phosphatase calcineurin. Here, we show that neuronal free Zn2+also plays a critical role in the ischemic modulation of Kv2.1. We found that sub‐lethal ischemia in cultured rat cortical neurons led to characteristic hyperpolarizing shifts in K+ current voltage dependency and pronounced dephosphorylation of Kv2.1. Zn2+chelation, similar to calcineurin inhibition, attenuated ischemic induced changes in K+ channel activation kinetics. Zn2+chelation during ischemia also blocked Kv2.1 declustering. Surprisingly, we found that the Zn2+rise following ischemia occurred in spite of calcineurin inhibition. Therefore, a calcineurin‐independent rise in neuronal free Zn2+ is critical in altering Kv2.1 channel activity and localization following ischemia. The identification of Zn2+ in mediating ischemic modulation of Kv2.1 may lead to a better understanding of cellular adaptive responses to injury.  相似文献   

7.
The aim of the present study was to determine whether acetazolamide (AZ) contributes to the inhibition of the fast inactivating transient K+ current (IA) in adult rat nodose ganglion (NG) neurons. We have previously shown that pretreatment with either AZ or 4‐AP attenuated or blocked the CO2‐induced inhibition of slowly adapting pulmonary stretch receptors in in vivo experiments. The patch‐clamp experiments were performed by using the isolated NG neurons. In addition to this, the RT‐PCR of mRNA and the expression of voltage‐gated K+ (Kv) 1.4, Kv 4.1, Kv 4.2, and Kv 4.3 channel proteins from nodose ganglia were examined. We used NG neurons sensitive to the 1 mM AZ application. The application of 1 mM AZ inhibited the IA by approximately 27% and the additional application of 4‐AP (1 mM) further inhibited IA by 48%. The application of 0.1 μM α‐dendrotoxin (α‐DTX), a slow inactivating transient K+ current (ID) blocker, inhibited the baseline IA by approximately 27%, and the additional application of 1 mM AZ further decreased the IA by 51%. In current clamp experiments, AZ application (1 mM) increased the number of action potentials due to the decreased duration of the depolarizing phase of action potentials and/or due to a reduction in the resting membrane potential. Four voltage‐gated K+ channel proteins were present, and most (80–90%) of the four Kv channels immunoreactive neurons showed the co‐expression of carbonic anhydrase‐II (CA‐II) immunoreactivity. These results indicate that the application of AZ causes the reduction in IA via the inhibition of four voltage‐gated K+ channel (Kv) proteins without affecting ID.  相似文献   

8.
Recently we have shown that nerve growth factor (NGF) controls the performance of the Na+, K+ -pump in its target ganglionic neurons in suspension cultures. In the present study, enriched neuronal preparations of embryonic day 8 (E8) chick dorsal root ganglia (DRG) were obtained by means of a differential attachment procedure using tissue culture plastic dishes. Neurons were routinely seeded into polyornithine-coated 16 mm culture wells in the presence of NGF. After 18 h, cultures were switched to media with or without NGF, and containing either86Rb+ (as a tracer for K+) or22Na+ (as a tracer for Na ions). Over the next 12–15 h the cultures were assessed for numbers of surviving neurons and accumulated radioactivity. Cultured E8 chick DRG neurons fail to maintain their intracellular K+ concentration when deprived of NGF over 4–6 h. The NGF-deprived and K+- depleted neurons reaccumulate K+ within minutes of delayed NGF administration. The occurrence of this K+ response in culture to added NGF parallels the response occurring in E8 neuronal suspensions, including the time of onset of irreversibility. Similar experiments performed with22Na+ indicate corresponding ionic behaviors for cultured E8 DRG neurons. These NGF-controlled ionic responses in monolayer cultures occur for E7 and E10 neurons, but not E14 neurons and parallel the survival response to NGF of the same neurons. Blocking the pump performance by NGF deprivation leads to neuronal death. Identical results are obtained by addition of oubain or omission of external K+ in the presence of NGF. Partial reduction of pump performance by any one of these treatments leads to partial survival of the neuronal population in a precisely predictable manner. Therefore, control of the pump by NGF is an essential component of the NGF action on neuronal survival.  相似文献   

9.
Active conductances located and operating on neuronal dendrites are expected to regulate synaptic integration and plasticity. We investigate how Kv4.2‐mediated A‐type K+ channels and Ca2+‐activated K+ channels are involved in the induction process of Hebbian‐type plasticity that requires correlated pre‐ and postsynaptic activities. In CA1 pyramidal neurons, robust long‐term potentiation (LTP) induced by a theta burst pairing protocol usually occurred within a narrow window during which incoming synaptic potentials coincided with postsynaptic depolarization. Elimination of dendritic A‐type K+ currents in Kv4.2?/? mice, however, resulted in an expanded time window, making the induction of synaptic potentiation less dependent on the temporal relation of pre‐ and postsynaptic activity. For the other type of synaptic plasticity, long‐term depression, the threshold was significantly increased in Kv4.2?/? mice. This shift in depression threshold was restored to normal when the appropriate amount of internal free calcium was chelated during induction. In concert with A‐type channels, Ca2+‐activated K+ channels also exerted a sliding effect on synaptic plasticity. Blocking these channels in Kv4.2?/? mice resulted in an even larger potentiation while by contrast, the depression threshold was shifted further. In conclusion, dendritic A‐type and Ca2+‐activated K+ channels dually regulate the timing‐dependence and thresholds of synaptic plasticity in an additive way. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Voltage-gated potassium (Kv) channels play important roles in regulating the excitability of myocytes and neurons. Kv4.2 is the primary α-subunit of the channel that produces the A-type K+ current in CA1 pyramidal neurons of the hippocampus, which is critically involved in the regulation of dendritic excitability and plasticity. K+ channel-interacting proteins, KChIPs (KChIP1–4), associate with the N-terminal of Kv4.2 and modulate the channel's biophysical properties, turnover rate and surface expression. In the present study, we investigated the role of Kv4.2 C-terminal PKA phosphorylation site S552 in the KChIP4a-mediated effects on Kv4.2 channel trafficking. We found that while interaction between Kv4.2 and KChIP4a does not require PKA phosphorylation of Kv4.2S552, phosphorylation of this site is necessary for both enhanced stabilization and membrane expression of Kv4.2 channel complexes produced by KChIP4a. Enhanced surface expression and protein stability conferred by co-expression of Kv4.2 with other KChIP isoforms did not require PKA phosphorylation of Kv4.2 S552. Finally, we identify A-kinase anchoring proteins (AKAPs) as Kv4.2 binding partners, allowing for discrete local PKA signaling. These data demonstrate that PKA phosphorylation of Kv4.2 plays an important role in the trafficking of Kv4.2 through its specific interaction with KChIP4a.  相似文献   

11.
We performed patch-clamp experiments to identify distinct K+ channels underlying the high K+ conductance and K+ uptake mechanism of the neuropile glial cell membrane on the single-channel level. In the soma membrane four different types of K+ channels were characterized, which were found to be distributed in clusters. Since no other types of K+ channels were observed, these appear to be the complete repertoire of K+ channels expressed in the soma region of this cell type. The outward rectifying 42 pS K+ channel could markedly contribute to the high K+ conductance and the maintenance of the membrane potential, since it shows the highest open probability of all channels. The channel gating occurred in bursts and patch excision decreased the open probability. The outward rectifying 74 pS K+ channel was rarely active in the cell-attached configuration; however, patch excision enhanced its open probability considerably. This type of channel may be involved in neuron-glial crosstalk, since it is activated by both depolarizations and increases in the intracellular Ca2+ concentration, which are known to be induced by neurotransmitter release following the activation of neurons. The 40 pS and 83 pS K+ channels showed inward rectifying properties, suggesting their involvement in the regulation of the extracellular K+ content. The 40 pS K+ channel could only be observed in the inside-out configuration. The 83 pS channel was activated following patch excision. At membrane potentials more negative than −60 mV, flickering events indicated voltage-dependent gating.  相似文献   

12.
Na+, K+-ATPase activity in 6 regions of adult brain was measured after incubation with varying concentrations of serotonin. A concentration-dependent increase in enzyme activity was observed in 4 regions, with cerebral cortex and cerebellum showing the largest response. These results together with previous ones suggest that serotoninmmodulates brain Na+, K+-ATPase activity through a specific receptor located in target neurons or glial cells.  相似文献   

13.
Activation of microglia by LPS leads to an induction of cytokine and NO release, reduced proliferation and increased outward K+ conductance, the latter involving the activation of Kv1.5 and Kv1.3 channels. We studied the role of these channels for microglial function using two strategies to interfere with channel expression, a Kv1.5 knockout (Kv1.5−/−) mouse and an antisense oligonucleotide (AO) approach. The LPS-induced NO release was reduced by AO Kv1.5 and completely absent in the Kv1.5−/− animal; the AO Kv1.3 had no effect. In contrast, proliferation was augmented with both, loss of Kv1.3 or Kv1.5 channel expression. After facial nerve lesion, proliferation rate was higher in Kv1.5−/− animals as compared to wild type. Patch clamp experiments confirmed the reduction of the LPS-induced outward current amplitude in Kv1.5−/− microglia as well as in Kv1.5- or Kv1.3 AO-treated cells. Our study indicates that induction of K+ channel expression is a prerequisite for the full functional spectrum of microglial activation.  相似文献   

14.
《Neurological research》2013,35(4):436-440
Abstract

Objectives: To identify age-related changes in voltage-gated K+ (Kv) channels that contribute to temporal processing in neurons of the central auditory system, we investigated the distribution of Kv1.1 and Kv3.1 in the auditory brainstem of adult and aged rats.

Methods: Immunohistochemistry was performed in accordance with the free-floating method described earlier.

Results: Among the auditory nuclei, only the posterior ventral cochlear nucleus (PVCN) showed age-related changes. Kv1.1 immunoreactivity was increased in the octopus cell bodies, while the staining intensity was significantly decreased in the neuropil. Image analysis demonstrated the specific increase in Kv1.1 immunoreactivity in aged cochlear nucleus neurons although the mean density of the entire selection was significantly decreased. In contrast, the number of Kv1.1-immunoreactive neurons was not significantly different between control and aged groups. The immunoreactivity for Kv3.1 was decreased in the octopus cells and neuropil of aged PVCN, which was confirmed by image analysis. The number of Kv3.1-positive cells was also significantly decreased in aged PVCN.

Discussion: This study may provide useful data to compare age-related changes in Kv1.1 and Kv3.1 with known physiological properties of auditory neurons.  相似文献   

15.
The Kv7 (KCNQ) family of voltage‐gated K+ channels regulates cellular excitability. The functional role of Kv7.2 has been hampered by the lack of a viable Kcnq2‐null animal model. In this study, we generated homozygous Kcnq2‐null sensory neurons using the Cre‐Lox system; in these mice, Kv7.2 expression is absent in the peripheral sensory neurons, whereas the expression of other molecular components of nodes (including Kv7.3), paranodes, and juxtaparanodes is not altered. The conditional Kcnq2‐null animals exhibit normal motor performance but have increased thermal hyperalgesia and mechanical allodynia. Whole‐cell patch recording technique demonstrates that Kcnq2‐null sensory neurons have increased excitability and reduced spike frequency adaptation. Taken together, our results suggest that the loss of Kv7.2 activity increases the excitability of primary sensory neurons. J. Comp. Neurol. 522:3262–3280, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
Plasma gelsolin (pGSN), a secreted form of gelsolin, is constitutively expressed throughout the central nervous system (CNS). The neurons, astrocytes and oligodendrocytes are the major sources of pGSN in the CNS. It has been shown that levels of pGSN in the cerebrospinal fluid (CSF) are decreased in several neurological conditions including HIV-1-associated neurocognitive disorders (HAND). Although there is no direct evidence that a decreased level of pGSN in CSF is causally related to the pathogenesis of neurological disorders, neural cells, if lacking pGSN, are more vulnerable to cell death. To understand how GSN levels relate to neuronal injury in HAND, we studied the effects of pGSN on HIV-1 gp120-activated outward K+ currents in primary rat cortical neuronal cultures. Incubation of rat cortical neurons with gp120 enhanced the outward K+ currents induced by voltage steps and resulted in neuronal apoptosis. Treatment with pGSN suppressed the gp120-induced increase of delayed rectifier current (IK) and reduced vulnerability to gp120-induced neuronal apoptosis. Application of Guangxitoxin-1E (GxTx), a Kv2.1 specific channel inhibitor, inhibited gp120 enhancement of IK and associated neuronal apoptosis, similar effects to pGSN. Western blot and PCR analysis revealed gp120 exposure to up-regulate Kv2.1 channel expression, which was also inhibited by treatment with pGSN. Taken together, these results indicate pGSN protects neurons by suppressing gp120 enhancement of IK through Kv2.1 channels and reduction of pGSN in HIV-1-infected brain may contribute to HIV-1-associated neuropathy.  相似文献   

17.
Subthreshold A‐type K+ currents (ISAs) have been recorded from the cell bodies of hippocampal and neocortical interneurons as well as neocortical pyramidal neurons. Kv4 channels are responsible for the somatodendritic ISAs. It has been proposed that neuronal Kv4 channels are ternary complexes including pore‐forming Kv4 subunits, K+ channel‐interacting proteins (KChIPs), and dipeptidyl peptidase‐like proteins (DPPLs). However, colocalization evidence was still lacking. The distribution of DPP10 mRNA in rodent brain has been reported but its protein localization remains unknown. In this study, we generated a DPP10 antibody to label DPP10 protein in adult rat brain by immunohistochemistry. Absent from glia, DPP10 proteins appear mainly in the cell bodies of DPP10(+) neurons, not only at the plasma membrane but also in the cytoplasm. At least 6.4% of inhibitory interneurons in the hippocampus coexpressed Kv4.3, KChIP1, and DPP10, with the highest density in the CA1 strata alveus/oriens/pyramidale and the dentate hilus. Colocalization of Kv4.3/KChIP1/DPP10 was also detected in at least 6.9% of inhibitory interneurons scattered throughout the neocortex. Both hippocampal and neocortical Kv4.3/KChIP1/DPP10(+) inhibitory interneurons expressed parvalbumin or somatostatin, but not calbindin or calretinin. Furthermore, we found colocalization of Kv4.2/Kv4.3/KChIP3/DPP10 in neocortical layer 5 pyramidal neurons and olfactory bulb mitral cells. Together, although DPP10 is also expressed in some brain neurons lacking Kv4 (such as parvalbumin‐ and somatostatin‐positive Golgi cells in the cerebellum), colocalization of DPP10 with Kv4 and KChIP at the plasma membrane of ISA‐expressing neuron somata supports the existence of Kv4/KChIP/DPPL ternary complex in vivo. J. Comp. Neurol. 523:608–628, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
Subthreshold A‐type K+ currents (ISAs) have been recorded from the somata of nociceptors and spinal lamina II excitatory interneurons, which sense and modulate pain, respectively. Kv4 channels are responsible for the somatodendritic ISAs. Accumulative evidence suggests that neuronal Kv4 channels are ternary complexes including pore‐forming Kv4 subunits and two types of auxiliary subunits: K+ channel‐interacting proteins (KChIPs) and dipeptidyl peptidase‐like proteins (DPPLs). Previous reports have shown Kv4.3 in a subset of nonpeptidergic nociceptors and Kv4.2/Kv4.3 in certain spinal lamina II excitatory interneurons. However, whether and which KChIP and DPPL are coexpressed with Kv4 in these ISA‐expressing pain‐related neurons is unknown. In this study we mapped the protein distribution of KChIP1, KChIP2, KChIP3, DPP6, and DPP10 in adult rat dorsal root ganglion (DRG) and spinal cord by immunohistochemistry. In the DRG, we found colocalization of KChIP1, KChIP2, and DPP10 in the somatic surface and cytoplasm of Kv4.3(+) nociceptors. KChIP3 appears in most Aβ and Aδ sensory neurons as well as a small population of peptidergic nociceptors, whereas DPP6 is absent in sensory neurons. In the spinal cord, KChIP1 is coexpressed with Kv4.3 in the cell bodies of a subset of lamina II excitatory interneurons, while KChIP1, KChIP2, and DPP6 are colocalized with Kv4.2 and Kv4.3 in their dendrites. Within the dorsal horn, besides KChIP3 in the inner lamina II and lamina III, we detected DPP10 in most projection neurons, which transmit pain signal to brain. The results suggest the existence of Kv4/KChIP/DPPL ternary complexes in ISA‐expressing nociceptors and pain‐modulating spinal interneurons. J. Comp. Neurol. 524:846–873, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
Secretion of pituitary gonadotropins is regulated centrally by the hypothalamic decapeptide gonadotropin releasing hormone (GnRH). Using the immortalized hypothalamic GT1-7 neuron, we characterized pharmacologically the dynamics of cytosolic Ca2+ and GnRH release in response to K+-induced depolarization of GT1-7 neurons. Our results showed that K+ concentrations from 7.5 to 60 mM increased [Ca2+]cyt in a concentration-dependent manner. Resting [Ca2+]cyt in GT1-7 cells was determined to be 69.7 ± 4.0 nM (mean ± S.E.M.; N = 69). K+-induced increases in [Ca2+]cyt ranged from 58.2 nM at 7.5 mM [K+] to 347 nM at 60 mM [K+]. K+-induced GnRH release ranged from about 10 pg/ml at 7.5 mM [K+] to about 60 pg/ml at 45 mM [K+]. K+-induced increases in [Ca2+]cyt and GnRH release were enhanced by 1 μM BayK 8644, an L-type Ca2+ channel agonist. The BayK enhancement was completely inhibited by 1 μM nimodipine, an L-type Ca2+ channel antagonist. Nimodipine (1 μM) alone partially inhibited K+-induced increases in [Ca2+]cyt and GnRH release. Conotoxin (1 μM) alone had no effect on K+-induced GnRH release or [Ca2+]cyt, but the combination of conotoxin (1 μM) and nimodipine (1 μM) inhibited K+-induced increase in [Ca2+]cyt significantly more (p < 0.02) than nimodipine alone, suggesting that N-type Ca2+ channels exist in GT1-7 neurons and may be part of the response to K+. The response of [Ca2+]cyt to K+ was linear with increasing [K+] whereas the response of GnRH release to increasing [K+] appeared to be saturable. K+-induced increase in [Ca2+]cyt and GnRH release required extracellular [Ca2+]. These experiments suggest that voltage dependent N- and L-type Ca2+ channels are present in immortalized GT1-7 neurons and that GnRH release is, at least in part, dependent on these channels for release of GnRH.  相似文献   

20.
The effects of serotonin (5-HT) on extracellular potassium concentration ([K+]0) were measured with ion-selective microelectrodes in rat hippocampal slices. Electrical stimulation of an excitatory afferent system, the Schaffer collateral commissural pathway, caused a 2–4 mM rise in [K+]0 in the stratum pyramidale of area CA1. 5-HT caused a 0.6–1.1 mM rise in [K+]0. This rise was associated with hyperpolarization of neurons and cessation of their spontaneous spike discharge. Methysergide, a 5-HT antagonist, reduced the 5-HT effect. The change in [K+]0 was highest in stratum moleculare and lowest in stratum pyramidale, the opposite gradient to that found with excitatory electrical stimulation. The 5-HT-induced [K+]0 changes were maximal in CA1 stratum moleculare, intermediate in the dentate stratum granulare and almost non-existent in the CA3 stratum pyramidale.GABA, but not norepinephrine, produced a small (up to 0.5 mM) rise in [K+]0 in stratum pyramidale. Extracellular calcium concentration measured with a Ca2+-sensitive microelectrode was reduced by electrical stimulation but unchanged by 5-HT or norepinephrine. It is suggested that 5-HT hyperpolarizes hippocampal cells by activation of sodium- and calcium-independent potassium channels, which cause a rise in [K+]0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号