首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 985 毫秒
1.
Nestor MW  Hoffman DA 《Hippocampus》2012,22(5):969-980
The heterogeneous expression of voltage-gated channels in dendrites suggests that neurons perform local microdomain computations at different regions. It has been shown that A-type K(+) channels have a nonuniform distribution along the primary apical dendrite in CA1 pyramidal neurons, increasing with distance from the soma. Kv4.2 channels, which are responsible for the somatodendritic A-type K(+) current in CA1 pyramidal neurons, shape local synaptic input, and regulate the back-propagation of APs into dendrites. Experiments were performed to test the hypothesis that Kv4.2 channels are differentially trafficked at different regions along the apical dendrite during basal activity and upon stimulation in CA1 neurons. Proximal (50-150 μm from the soma, primary and oblique) and distal (>200 μm) apical dendrites were selected. The fluorescence recovery after photobleaching (FRAP) technique was used to measure basal cycling rates of EGFP-tagged Kv4.2 (Kv4.2g). We found that the cycling rate of Kv4.2 channels was one order of magnitude slower at both primary and oblique dendrites between 50 and 150 μm from the soma. Kv4.2 channel cycling increased significantly at 200 to 250 μm from the soma. Expression of a Kv4.2 mutant lacking a phosphorylation site for protein kinase-A (Kv4.2gS552A) abolished this distance-dependent change in channel cycling; demonstrating that phosphorylation by PKA underlies the increased mobility in distal dendrites. Neuronal stimulation by α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) treatment increased cycling of Kv4.2 channels significantly at distal sites only. This activity-dependent increase in Kv4.2 cycling at distal dendrites was blocked by expression of Kv4.2gS552A. These results indicate that distance-dependent Kv4.2 mobility is regulated by activity-dependent phosphorylation of Kv4.2 by PKA.  相似文献   

2.
Subthreshold A‐type K+ currents (ISAs) have been recorded from the somata of nociceptors and spinal lamina II excitatory interneurons, which sense and modulate pain, respectively. Kv4 channels are responsible for the somatodendritic ISAs. Accumulative evidence suggests that neuronal Kv4 channels are ternary complexes including pore‐forming Kv4 subunits and two types of auxiliary subunits: K+ channel‐interacting proteins (KChIPs) and dipeptidyl peptidase‐like proteins (DPPLs). Previous reports have shown Kv4.3 in a subset of nonpeptidergic nociceptors and Kv4.2/Kv4.3 in certain spinal lamina II excitatory interneurons. However, whether and which KChIP and DPPL are coexpressed with Kv4 in these ISA‐expressing pain‐related neurons is unknown. In this study we mapped the protein distribution of KChIP1, KChIP2, KChIP3, DPP6, and DPP10 in adult rat dorsal root ganglion (DRG) and spinal cord by immunohistochemistry. In the DRG, we found colocalization of KChIP1, KChIP2, and DPP10 in the somatic surface and cytoplasm of Kv4.3(+) nociceptors. KChIP3 appears in most Aβ and Aδ sensory neurons as well as a small population of peptidergic nociceptors, whereas DPP6 is absent in sensory neurons. In the spinal cord, KChIP1 is coexpressed with Kv4.3 in the cell bodies of a subset of lamina II excitatory interneurons, while KChIP1, KChIP2, and DPP6 are colocalized with Kv4.2 and Kv4.3 in their dendrites. Within the dorsal horn, besides KChIP3 in the inner lamina II and lamina III, we detected DPP10 in most projection neurons, which transmit pain signal to brain. The results suggest the existence of Kv4/KChIP/DPPL ternary complexes in ISA‐expressing nociceptors and pain‐modulating spinal interneurons. J. Comp. Neurol. 524:846–873, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
Proper expression of synaptic NMDA receptors (NMDARs) is necessary to regulate synaptic Ca2+ influx and the induction the long-term potentiation (LTP) in the mammalian hippocampus. Previously we reported that expressing the A-type K+ channel subunit Kv4.2 in CA1 neurons of organotypic slice cultures reduced synaptic NR2B-containing NMDAR expression and completely blocked LTP induced by a pairing protocol. As pretreatment with an NMDAR antagonist (APV) overnight blocked the reduction of NR2B-containing receptors in neurons expressing EGFP-labeled Kv4.2 (Kv4.2g), we hypothesized that LTP would be rescued in Kv4.2g neurons by overnight treatment with APV. We report here that the overnight APV pretreatment in Kv4.2g-expressing neurons only partially restored potentiation. This partial potentiation was completely blocked by inhibition of the CAMKII kinase. These results indicate that A-type K+ channels must regulate synaptic integration and plasticity through another mechanism in addition to their regulation of synaptic NR2 subunit composition. We suggest that dendritic excitability, which is regulated by Kv4.2 expression, also contributes to synaptic plasticity.  相似文献   

4.
Subthreshold A‐type K+ currents (ISAs) have been recorded from the cell bodies of hippocampal and neocortical interneurons as well as neocortical pyramidal neurons. Kv4 channels are responsible for the somatodendritic ISAs. It has been proposed that neuronal Kv4 channels are ternary complexes including pore‐forming Kv4 subunits, K+ channel‐interacting proteins (KChIPs), and dipeptidyl peptidase‐like proteins (DPPLs). However, colocalization evidence was still lacking. The distribution of DPP10 mRNA in rodent brain has been reported but its protein localization remains unknown. In this study, we generated a DPP10 antibody to label DPP10 protein in adult rat brain by immunohistochemistry. Absent from glia, DPP10 proteins appear mainly in the cell bodies of DPP10(+) neurons, not only at the plasma membrane but also in the cytoplasm. At least 6.4% of inhibitory interneurons in the hippocampus coexpressed Kv4.3, KChIP1, and DPP10, with the highest density in the CA1 strata alveus/oriens/pyramidale and the dentate hilus. Colocalization of Kv4.3/KChIP1/DPP10 was also detected in at least 6.9% of inhibitory interneurons scattered throughout the neocortex. Both hippocampal and neocortical Kv4.3/KChIP1/DPP10(+) inhibitory interneurons expressed parvalbumin or somatostatin, but not calbindin or calretinin. Furthermore, we found colocalization of Kv4.2/Kv4.3/KChIP3/DPP10 in neocortical layer 5 pyramidal neurons and olfactory bulb mitral cells. Together, although DPP10 is also expressed in some brain neurons lacking Kv4 (such as parvalbumin‐ and somatostatin‐positive Golgi cells in the cerebellum), colocalization of DPP10 with Kv4 and KChIP at the plasma membrane of ISA‐expressing neuron somata supports the existence of Kv4/KChIP/DPPL ternary complex in vivo. J. Comp. Neurol. 523:608–628, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
The Kv2.1 voltage‐gated K+ channel is widely expressed throughout mammalian brain, where it contributes to dynamic activity‐dependent regulation of intrinsic neuronal excitability. Here we show that somatic plasma membrane Kv2.1 clusters are juxtaposed to clusters of intracellular ryanodine receptor (RyR) Ca2+‐release channels in mouse brain neurons, most prominently in medium spiny neurons (MSNs) of the striatum. Electron microscopy–immunogold labeling shows that in MSNs, plasma membrane Kv2.1 clusters are adjacent to subsurface cisternae, placing Kv2.1 in close proximity to sites of RyR‐mediated Ca2+ release. Immunofluorescence labeling in transgenic mice expressing green fluorescent protein in specific MSN populations reveals the most prominent juxtaposed Kv2.1:RyR clusters in indirect pathway MSNs. Kv2.1 in both direct and indirect pathway MSNs exhibits markedly lower levels of labeling with phosphospecific antibodies directed against the S453, S563, and S603 phosphorylation site compared with levels observed in neocortical neurons, although labeling for Kv2.1 phosphorylation at S563 was significantly lower in indirect pathway MSNs compared with those in the direct pathway. Finally, acute stimulation of RyRs in heterologous cells causes a rapid hyperpolarizing shift in the voltage dependence of activation of Kv2.1, typical of Ca2+/calcineurin‐dependent Kv2.1 dephosphorylation. Together, these studies reveal that striatal MSNs are distinct in their expression of clustered Kv2.1 at plasma membrane sites juxtaposed to intracellular RyRs, as well as in Kv2.1 phosphorylation state. Differences in Kv2.1 expression and phosphorylation between MSNs in direct and indirect pathways provide a cell‐ and circuit‐specific mechanism for coupling intracellular Ca2+ release to phosphorylation‐dependent regulation of Kv2.1 to dynamically impact intrinsic excitability. J. Comp. Neurol. 522:3555–3574, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
7.
The aim of the present study was to determine whether acetazolamide (AZ) contributes to the inhibition of the fast inactivating transient K+ current (IA) in adult rat nodose ganglion (NG) neurons. We have previously shown that pretreatment with either AZ or 4‐AP attenuated or blocked the CO2‐induced inhibition of slowly adapting pulmonary stretch receptors in in vivo experiments. The patch‐clamp experiments were performed by using the isolated NG neurons. In addition to this, the RT‐PCR of mRNA and the expression of voltage‐gated K+ (Kv) 1.4, Kv 4.1, Kv 4.2, and Kv 4.3 channel proteins from nodose ganglia were examined. We used NG neurons sensitive to the 1 mM AZ application. The application of 1 mM AZ inhibited the IA by approximately 27% and the additional application of 4‐AP (1 mM) further inhibited IA by 48%. The application of 0.1 μM α‐dendrotoxin (α‐DTX), a slow inactivating transient K+ current (ID) blocker, inhibited the baseline IA by approximately 27%, and the additional application of 1 mM AZ further decreased the IA by 51%. In current clamp experiments, AZ application (1 mM) increased the number of action potentials due to the decreased duration of the depolarizing phase of action potentials and/or due to a reduction in the resting membrane potential. Four voltage‐gated K+ channel proteins were present, and most (80–90%) of the four Kv channels immunoreactive neurons showed the co‐expression of carbonic anhydrase‐II (CA‐II) immunoreactivity. These results indicate that the application of AZ causes the reduction in IA via the inhibition of four voltage‐gated K+ channel (Kv) proteins without affecting ID.  相似文献   

8.
In order to confirm the species-specific distribution of voltage-gated K+ (Kv) channels and the definitive relationship between their immunoreactivities and seizure activity, we investigated Kv2.x, Kv3.x and Kv4.x channel immunoreactivities in the hippocampi of seizure-resistant (SR) and seizure-sensitive (SS) gerbils. There was no difference in Kv2.1, Kv3.4, Kv4.2 and Kv4.3 immunoreactivity in the hippocampus between SR and SS gerbils. In comparison to SR gerbils, Kv3.1b immunoreactivity in neurons was significantly lower in SS gerbils instead Kv3.1b-immunoreactive astrocytes were clearly observed in SS gerbils (p < 0.05). Kv3.2 immunoreactivity was also significantly lower in neurons of SS gerbils than in those of SR gerbils (p < 0.05). Considering the findings of our previous study, these findings suggest that delayed rectifier K+ channels (Kv1.1, Kv1.2, Kv1.5, Kv1.6, Kv2.1 and Kv3.1-2), not A-type K+ channels (Kv1.4, Kv3.4 and Kv4.x), may be down-regulated in the SS gerbil hippocampus, as compared to SR gerbils.  相似文献   

9.
Potassium channels are key determinants of neuronal excitability. We recently identified KChIPs as a family of calcium binding proteins that coassociate and colocalize with Kv4 family potassium channels in mammalian brain (An et al. [2000] Nature 403:553). Here, we used light microscopic immunohistochemistry and multilabel immunofluorescence labeling, together with transmission electron microscopic immunohistochemistry, to examine the subcellular distribution of KChIPs and Kv4 channels in adult rat cerebellum. Light microscopic immunohistochemistry was performed on 40-microm free-floating sections using a diaminobenzidine labeling procedure. Multilabel immunofluorescence staining was performed on free-floating sections and on 1-microm ultrathin cryosections. Electron microscopic immunohistochemistry was performed using an immunoperoxidase pre-embedding labeling procedure. By light microscopy, immunoperoxidase labeling showed that Kv4.2, Kv4.3, and KChIPs 1, 3, and 4 (but not KChIP2) were expressed at high levels in cerebellar granule cells (GCs). Kv4.2 and KChIP1 were highly expressed in GCs in rostral cerebellum, whereas Kv4.3 was more highly expressed in GCs in caudal cerebellum. Immunofluorescence labeling revealed that KChIP1 and Kv4.2 are concentrated in somata of cerebellar granule cells and in synaptic glomeruli that surround synaptophysin-positive mossy fiber axon terminals. Electron microscopic analysis revealed that KChIP1 and Kv4.2 immunoreactivity is concentrated along the plasma membrane of cerebellar granule cell somata and dendrites. In synaptic glomeruli, KChIP1 and Kv4.2 immunoreactivity is concentrated along the granule cell dendritic membrane, but is not concentrated at postsynaptic densities. Taken together, these data suggest that A-type potassium channels containing Kv4.2 and KChIP1, and perhaps also KChIP3 and 4, play a critical role in regulating postsynaptic excitability at the cerebellar mossy-fiber/granule cell synapse.  相似文献   

10.
Arachidonic acid (AA) is a free fatty acid membrane‐permeable second messenger that is liberated from cell membranes via receptor‐ and Ca2+‐dependent events. We have shown previously that extremely low [AA]i (1 pm ) inhibits the postsynaptic voltage‐gated K+ current (IA) in hippocampal neurons. This inhibition is blocked by some antioxidants. The somatodendritic IA is mediated by Kv4.2 gene products, whereas presynaptic IA is mediated by Kv1.4 channel subunits. To address the interaction of AA with these α‐subunits we studied the modulation of A‐currents in human embryonic kidney 293 cells transfected with either Kv1.4 or Kv4.2 rat cDNA, using whole‐cell voltage‐clamp recording. For both currents 1 pm [AA]i inhibited the conductance by > 50%. In addition, AA shifted the voltage dependence of inactivation by ?9 (Kv1.4) and +6 mV (Kv4.2), respectively. Intracellular co‐application of Trolox C (10 μm ), an antioxidant vitamin E derivative, only slowed the effects of AA on amplitude. Notably, Trolox C shifted the voltage dependence of activation of Kv1.4‐mediated IA by ?32 mV. Extracellular Trolox for > 15 min inhibited the AA effects on IA amplitudes as well as the effect of intracellular Trolox on the voltage dependence of activation of Kv1.4‐mediated IA. Extracellular Trolox further shifted the voltage dependence of activation for Kv4.2 by +33 mV. In conclusion, the inhibition of maximal amplitude of Kv4.2 channels by AA can explain the inhibition of somatodendritic IA in hippocampal neurons, whereas the negative shift in the voltage dependence of inactivation apparently depends on other neuronal channel subunits. Both AA and Trolox potently modulate Kv1.4 and Kv4.2 channel α‐subunits, thereby presumably tuning presynaptic transmitter release and postsynaptic somatodendritic excitability in synaptic transmission and plasticity.  相似文献   

11.
The Kv7 (KCNQ) family of voltage‐gated K+ channels regulates cellular excitability. The functional role of Kv7.2 has been hampered by the lack of a viable Kcnq2‐null animal model. In this study, we generated homozygous Kcnq2‐null sensory neurons using the Cre‐Lox system; in these mice, Kv7.2 expression is absent in the peripheral sensory neurons, whereas the expression of other molecular components of nodes (including Kv7.3), paranodes, and juxtaparanodes is not altered. The conditional Kcnq2‐null animals exhibit normal motor performance but have increased thermal hyperalgesia and mechanical allodynia. Whole‐cell patch recording technique demonstrates that Kcnq2‐null sensory neurons have increased excitability and reduced spike frequency adaptation. Taken together, our results suggest that the loss of Kv7.2 activity increases the excitability of primary sensory neurons. J. Comp. Neurol. 522:3262–3280, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
A subpopulation of sensory neurons in the petrosal ganglion transmits information between peripheral chemoreceptors (glomus cells) in the carotid body and relay neurons in the nucleus of the solitary tract. Expression of voltage-gated K+ channels in these neurons was characterized by immunohistochemical localization. Five members of the Kv1 family, Kv1.1, Kv1.2, Kv1.4, Kv1.5 and Kv1.6 and members of two other families, Kv2.1 and Kv4.3, were identified in over 90% of the chemoreceptor neurons. Although the presence of these channel proteins was consistent throughout the population, individual neurons showed considerable variation in K+ current profiles.  相似文献   

13.
Neurokinins (NK) released from terminals of dorsal root ganglion (DRG) neurons may control firing of these neurons by an autofeedback mechanism. In this study we used patch clamp recording techniques to determine if NKs alter excitability of rat L4-S3 DRG neurons by modulating K+ currents. In capsaicin (CAPS)-responsive phasic neurons substance P (SP) lowered action potential (AP) threshold and increased the number of APs elicited by depolarizing current pulses. SP and a selective NK2 agonist, [βAla8]-neurokinin A (4–10) also inhibited low threshold inactivating K+ currents isolated by blocking non-inactivating currents with a combination of high TEA, (−) verapamil and nifedipine. Currents recorded under these conditions were heteropodatoxin-sensitive (Kv4 blocker) and α-dendrotoxin-insensitive (Kv1.1 and Kv1.2 blocker). SP and NKA elicited a > 10 mV positive shift of the voltage dependence of activation of the low threshold currents. This effect was absent in CAPS-unresponsive neurons. The effect of SP or NKA on K+ currents in CAPS-responsive phasic neurons was fully reversed by an NK2 receptor antagonist (MEN10376) but only partially reversed by a PKC inhibitor (bisindolylmaleimide). An NK1 selective agonist ([Sar9, Met11]-substance P) or direct activation of PKC with phorbol 12,13-dibutyrate, did not change firing in CAPS-responsive neurons, but did inhibit various types of K+ currents that activated over a wide range of voltages. These data suggest that the excitability of CAPS-responsive phasic afferent neurons is increased by activation of NK2 receptors and that this is due in part to inhibition and a positive voltage shift in the activation of heteropodatoxin-sensitive Kv4 channels.  相似文献   

14.
The channel pore-forming α subunit Kv4.2 is a major constituent of A-type (I(A)) potassium currents and a key regulator of neuronal membrane excitability. Multiple mechanisms regulate the properties, subcellular targeting, and cell-surface expression of Kv4.2-encoded channels. In the present study, shotgun proteomic analyses of immunoprecipitated mouse brain Kv4.2 channel complexes unexpectedly identified the voltage-gated Na? channel accessory subunit Navβ1. Voltage-clamp and current-clamp recordings revealed that knockdown of Navβ1 decreases I(A) densities in isolated cortical neurons and that action potential waveforms are prolonged and repetitive firing is increased in Scn1b-null cortical pyramidal neurons lacking Navβ1. Biochemical and voltage-clamp experiments further demonstrated that Navβ1 interacts with and increases the stability of the heterologously expressed Kv4.2 protein, resulting in greater total and cell-surface Kv4.2 protein expression and in larger Kv4.2-encoded current densities. Together, the results presented here identify Navβ1 as a component of native neuronal Kv4.2-encoded I(A) channel complexes and a novel regulator of I(A) channel densities and neuronal excitability.  相似文献   

15.
K+ channel interacting protein 1 (KChIP1) is a neuronal calcium sensor (NCS) protein that interacts with multiple intracellular molecules. Its physiological function, however, remains largely unknown. We report that KChIP1 is predominantly expressed at GABAergic synapses of a subset of parvalbumin-positive neurons in the brain. Forced expression of KChIP1 in cultured hippocampal neurons increased the frequency of miniature inhibitory postsynaptic currents (mIPSCs), reduced paired pulse facilitation of autaptic IPSCs, and decreases potassium current density. Furthermore, genetic ablation of KChIP1 potentiated potassium current density in neurons and caused a robust enhancement of anxiety-like behavior in mice. Our study suggests that KChIP1 is a synaptic protein that regulates behavioral anxiety by modulating inhibitory synaptic transmission, and drugs that act on KChIP1 may help to treat patients with mood disorders including anxiety.  相似文献   

16.
Zhou X  Song M  Chen D  Wei L  Yu SP 《Experimental neurology》2011,229(2):471-483
Voltage-gated K+ channels are key regulators of neuronal excitability, playing major roles in setting resting membrane potential, repolarizing the cell membrane after action potentials and affecting transmitter release. The M-type channel or M-channel is a unique voltage- and ligand-regulated K+ channel. It is composed of the molecular counterparts KCNQ2 and KCNQ3 (also named Kv7.2 and Kv7.3) channels and expressed in the soma and dendrites of neurons. The present investigation examined the hypothesis that KCNQ2/3 channels played a regulatory role in neuronal differentiation and maturation. In cultured mouse embryonic stem (ES) cells undergoing neuronal differentiation and primary embryonic (E15–17) hippocampal cultures, KCNQ2 and KCNQ3 channels and underlying M-currents were identified. Blocking of KCNQ channels in these cells for 5 days using the specific channel blocker XE991 (10 μM) or linopirdine (30 μM) significantly decreased synaptophysin and syntaxin expression without affecting cell viability. Chronic KCNQ2/3 channel block reduced the expression of vesicular GABA transporter (v-GAT), but not vesicular glutamate transporter (v-GluT). Enhanced ERK1/2 phosphorylation was observed in XE991- and linopirdine-treated neural progenitor cells. In electrophysiological recordings, cells undergoing chronic block of KCNQ2/3 channels showed normal amplitude of mPSCs while the frequency of mPSCs was reduced. On the other hand, KCNQ channel opener N-Ethylmaleimide (NEM, 2 μM) increased mPSC frequency. Fluorescent imaging using fluorescent styryl-dye FM4-64 revealed that chronic blockade of KCNQ2/3 channels decreased endocytosis but facilitated exocytosis. These data indicate that KCNQ2/3 channels participate in the regulation of neuronal differentiation and show a tonic regulation on pre-synaptic transmitter release and recycling in developing neuronal cells.  相似文献   

17.
The medial habenula (MHb), implicated in stress, depression, memory, and nicotine withdrawal syndromes, receives septal inputs and sends efferents to the interpeduncular nucleus. We previously showed that the immunoglobulin‐like cell adhesion molecules (CAMs) nectin‐2α and nectin‐2δ are expressed in astrocytes in the brain, but their expression in neurons remains unknown. We showed here by immunofluorescence microscopy that nectin‐2α, but not nectin‐2δ, was prominently expressed in the cholinergic neurons in the developing and adult MHbs and localized at the boundary between the adjacent somata of the clustered cholinergic neurons where the voltage‐gated A‐type K+ channel Kv4.2 was localized. Analysis by immunoelectron microscopy on this boundary revealed that Kv4.2 was localized at the membrane specializations (MSs) with plasma membrane darkening in an asymmetrical manner, whereas nectin‐2α was localized on the apposed plasma membranes mostly at the outside of these MSs, but occasionally localized at their edges and insides. Nectin‐2α at this boundary was not colocalized with the nectin‐2α‐binding protein afadin, other CAMs, or their interacting peripheral membrane proteins, suggesting that nectin‐2α forms a cell adhesion apparatus different from the Kv4.2‐associated MSs. Genetic ablation of nectin‐2 delayed the localization of Kv4.2 at the boundary between the adjacent somata of the clustered cholinergic neurons in the developing MHb. These results revealed the unique localization of nectin‐2α and its regulatory role in the localization of Kv4.2 at the MSs in the MHb.  相似文献   

18.
Poststroke seizures are considered to be the major cause of epilepsy in the elderly. The mechanisms of poststroke seizures remain unclear. A history of diabetes mellitus has been identified as an independent predictor of acute poststroke seizures in stroke patients. The present study sought to reveal the mechanisms for the development of postischemic seizures under hyperglycemic conditions. Transient forebrain ischemia was produced in adult Wistar rats by using the four‐vessel occlusion method. At the normal blood glucose level, seizures occurred in ~50% of rats after 25 min of ischemia. However, in rats with hyperglycemia, the incidence rate of postischemic seizures was significantly increased to 100%. The occurrence of postischemic seizures was not correlated with the severity of brain damage in hyperglycemic rats. Mannitol, an osmotic diuretic agent, could neither prevent postischemic seizures nor alleviate the exacerbated brain damage in the presence of hyperglycemia. K+ channels play a critical role in controlling neuronal excitability. The expression of A‐type K+ channel subunit Kv4.2 in the hippocampus and the cortex was significantly reduced in hyperglycemic rats with seizures compared with those without seizures. These results suggest that the reduction of Kv4.2 expression could contribute to the development of postischemic seizures in hyperglycemia. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
In the brain, the transient-inactivating voltage-gated potassium channel currents (called I(K(A)) or A-currents) are activated at subthreshold membrane potentials to control the excitability of neurons. In the current study, the effect of intracellular calcium on the A-current and the action mechanism of intracellular calcium was investigated by using the whole-cell voltage-clamp technique. Elevation of intracellular calcium by addition of 2 mM CaCl2 in the pipette solution significantly modulated both the peak amplitude and the kinetics of the A-current in rat granule neurons. The peak amplitudes of the A-current were 1,060 +/- 87 pA and 1,972 +/- 16 pA under conditions of no Ca2+ and elevated intracellular Ca2+, respectively. The time to peak, the time course of fast inactivation, and the steady-state inactivation property of the A-current were all significantly altered by elevating the intracellular Ca2+. Replacement of the Ca2+ in the pipette solution with the same concentration of Co2+ did not mimic the effects of intracellular Ca2+ on the A-current amplitude and kinetics. These effects are similar to the behavior of the reconstituted Kv4/KChIP (K(V) channel-interacting proteins) current induced by expression of KChIP and Kv4 together in a cell expression system. Application of 10 microM arachidonic acid, which can bind to the Kv4/KChIP complex, inhibited the A-current and eliminated the effects of intracellular Ca2+ on the A-current, suggesting that KChIP may be involved in the effects of Ca2+ on the A-current. Collectively, our results indicate that elevated intracellular Ca2+ modulates the amplitude, fast activation, and steady-state inactivation characteristics of the A-current in rat cerebellar granule neurons, and this may occur via KChIP.  相似文献   

20.
We have shown that calcium-activated non-selective (CAN) channels from embryonic chick sensory neurons are permeable to both Na+ and K+ and are not blocked by TTX, TEA, or 4-AP. These neuronal CAN channels are activated by sub-micromolar cytoplasmic Ca2+ with negative cooperativity. The effect of Ca2+ is to decrease the closed times of the channel with little effect on the time the channel remains open. Isolated neuronal CAN channels can be phosphorylated by cAMP-dependent protein kinase (PKA). The effect of phosphorylation is to shorten channel open time and to minimize the effect of Ca2+ on channel closed time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号