首页 | 本学科首页   官方微博 | 高级检索  
检索        


Recent developments in analytical determination of furosemide
Authors:Espinosa Bosch M  Ruiz Sánchez A J  Sánchez Rojas F  Bosch Ojeda C
Institution:Department of Pharmacy, General Hospital, University Hospital "Virgen del Rocío", Manuel Siurot s/n, 41013 Sevilla, Spain.
Abstract:Furosemide (FUR), a drug that promotes urine excretion, is used in the pharmacotherapy of various diseases and is considered as a doping agent in sports. FUR is a powerful diuretic (water pill). This medicine is used to treat excessive fluid accumulation and swelling (edema) of the body caused by heart failure, cirrhosis, chronic kidney failure, and nephrotic syndrome. Owing to its extensive use as a powerful diuretic, FUR has long attracted the attention of many analysts. A variety of analytical methods have been proposed for the determination of FUR in biological fluids and pharmaceutical samples. The revision includes the most relevant analytical methodologies used in its determination from the nineties decade at present.
Keywords:AAS  atomic absorption spectroscopy  AGP  acidic glycoprotein  AM  amiloride hydrochloride  APCI  atmospheric pressure chemical ionization  BSA  bovine serum albumin  CE–LIF  capillary electrophoresis–laser induced fluorescence  CE–MS  capillary electrophoresis–mass spectrometry  CE–MS2  capillary electrophoresis–negative electrospray ionization–ion trap tandem mass spectrometry  CL  chemiluminescence  CZE  capillary zone electrophoresis  DAD  diode-array detection  DDA  data dependent acquisition  DDPC  dodecylpyridinium chloride  DNA  deoxyribonucleic acid  DPPH  2  2-diphenyl-1-picrylhydrazyl  DPV  differential pulse voltammetry  EEM  excitation–emission matrix  EI  electron ionization  ESI  electrospray ionization  ESMS  electrospray ionization mass spectrometry  FD  fluorescence detection  FI  flow injection  FIA  flow-injection analysis  FI–CL  flow-injection–chemiluminescence  FUR  furosemide  GC/EI–MS  gas chromatography/electron impact–mass spectrometry  GC–MS  gas chromatography–mass spectrometry  HPLC  high performance liquid chromatography  HPLC–FD  high performance liquid chromatography–fluorescence detection  IDA  information dependent acquisitions  ID  internal diameter  IS  internal standard  ITP  isotachophoretic  LC  liquid chromatography  LC/MS  liquid chromatography/mass spectrometry  LC/MS/MS  liquid chromatography/mass spectrometry/mass spectrometry  MBTH  3-methyl-2-benzothiazolinone hydrazone  MEKC  micellar electrokinetic chromatography  MLC  micellar liquid chromatography  MS  mass spectrometry  MS/MS  mass spectrometry/mass spectrometry  MUX  multiplexed  NED  N-(naphthyl)-ethylene-diamine  NQS  1  2-naphthoquinone-4-sulfonate  PAD  pulsed amperometric detection  PIR  piretanide  PLS  partial least square  PVC  poly(vinyl-chloride)  RAMs  restricted access materials  RP  reversed phase  RP-HPLC  reversed phase-high performance liquid chromatography  RP-LC  reversed phase-liquid chromatography  RuBPS  tris-(4  7-diphenyl-1  10-phenantrolinedisulfonic acid)ruthenium(II)  SAL  saluamine  SDS  sodium dodecyl sulfate  SIA  sequential injection analysis  SIA-RAM  sequential injection analysis-restricted access material  SPE  solid-phase extraction  SPL  spironolactone  SPS  solid-phase spectroscopy  SRM  selected reaction monitoring  SWV  square wave voltammetry  TDPB  tridecylpyridinium bromide  TFA  trifluoroacetic acid  TLS  thermal lens spectrophotometry  TOPO  trioctylphosphine oxide  TRI  triamterene  UV  ultraviolet  UV–vis  ultraviolet–visible  VASS  variable-angle synchronous scanning
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号