首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   1篇
  国内免费   1篇
基础医学   7篇
临床医学   1篇
内科学   16篇
神经病学   2篇
特种医学   2篇
综合类   5篇
预防医学   4篇
眼科学   1篇
药学   28篇
中国医学   2篇
肿瘤学   2篇
  2022年   2篇
  2021年   13篇
  2020年   1篇
  2019年   1篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   6篇
  2012年   1篇
  2011年   8篇
  2010年   5篇
  2009年   4篇
  2008年   3篇
  2007年   4篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
排序方式: 共有70条查询结果,搜索用时 15 毫秒
1.
2.
In the present paper, changes in mechanical properties of Portland cement-based mortars due to the addition of carbon nanotubes (CNT) and corrosion of embedded steel rebars in CNT cement pastes are reported. Bending strength, compression strength, porosity and density of mortars were determined and related to the CNT dosages. CNT cement paste specimens were exposed to carbonation and chloride attacks, and results on steel corrosion rate tests were related to CNT dosages. The increase in CNT content implies no significant variations of mechanical properties but higher steel corrosion intensities were observed.  相似文献   
3.
In this work, the influence of carbon nanotubes (CNTs) on the self‐assembly of nanocomposite materials made of cylinder‐forming polystyrene‐block‐poly(ethylene‐butylene)‐block‐polystyrene (SEBS) is studied. CNTs are modified with polystyrene (PS) brushes by surface‐initiated atom transfer radical polymerization to facilitate both their dispersion and the orientation of neighboring PS domains of the block copolymer (BCP) along modified CNT‐PS. Dynamic rheology is utilized to probe the viscoelastic and thermal response of the nanoscopic structure of BCP nanocomposites. The results indicate that nonmodified CNTs increase the BCP microphase separation temperature because of BCP segmental confinement in the existing 3D network formed between CNTs, while the opposite holds for the samples filled with modified CNT‐PS. This is explained by severely retarded segmental motion of the matrix chains due to their preferential interactions with the PS chains of the CNT‐PS. Moreover, transient viscoelastic analysis reveals that modified CNT‐PS have a more pronounced effect on flow‐induced BCP structural orientation with much lower structural recovery rate. It is demonstrated that dynamic‐mechanical thermal analysis can provide valuable insights in understanding the role of CNT incorporation on the microstructure of BCP nanocomposite samples. Accordingly, the presence of CNT has a significant promoting effect on microstructural development, comparable to that of annealing.  相似文献   
4.
RNAi can specifically regulate gene expression, but efficient delivery of siRNA in vivo is difficult while it has been shown that modified carbon nanotubes (CNT) protect siRNA, facilitate entry into cells and enhance transdermal drugs delivery. Single-walled carbon nanotubes (SWCNT) were functionalized non-covalently with succinated polyethyleimine (PEI-SA). In this study, the water soluble CNT, PEI-SA/CNT (IS/C) were isolated and characterized, the gene silencing induced by IS/C/siRNA complexes was achieved in vitro in B16-F10 cells. In vivo delivery was topically applied to shaved mouse skin, as well as topically to a C57BL/6 mice melanoma model. We found significant uptake of Cy3-labeled siRNA specific to Braf (siBraf) and gene silencing in the tumor tissue. Treatment with IS/C/siBraf resulted in attenuation of tumor growth over a 25-day period. This new delivery method has provided a new possibility for future siRNA delivery and therapy, which providing insight for the potential application and development of CNT-based siRNA delivery.  相似文献   
5.
Concrete strength and factors affecting its development during early concrete curing are important research topics. Avoiding uncertain incidents during construction and in service life of structures requires an appropriate monitoring system. Therefore, numerous techniques are used to monitor the health of a structure. This paper presents a nondestructive testing technique for monitoring the strength development of concrete at early curing ages. Dispersed carbon nanotubes (CNTs) were used with cementitious materials and piezoelectric (PZT) material, a PZT ceramic, owing to their properties of intra electromechanical effects and sensitivity to measure the electromechanical impedance (EMI) signatures and relevant properties related to concrete strength, such as the elastic modulus, displacement, acceleration, strength, and loading effects. Concrete compressive strength, hydration temperature, mixture ratio, and variation in data obtained from the impedance signatures using fuzzy logic were utilized in the comparative result prediction method for concrete strength. These results were calculated using a fuzzy logic-based model considering the maturity method, universal testing machine (UTM) data, and analyzed EMI data. In the study, for data acquisition, a hybrid PZT–CNT sensor and a temperature sensor (Smart Rock) were embedded in the concrete to obtain the hydration temperature history to utilize the concrete maturity method and provide data on the EMI signatures. The dynamic changes in the medium caused during the phase in the concrete strengthening process were analyzed to predict the strength development process of concrete at early curing ages. Because different parameters are considered while calculating the concrete strength, which is related to its mechanical properties, the proposed novel method considers that changes in the boundary condition occurring in the concrete paste modify the resonant frequency response of the structure. Thus, relating and analyzing this feature can help predict the concrete strength. A comprehensive comparison of the results calculated using the proposed module, maturity method, and cylindrical specimens tested using the UTM proved that it is a cost-effective and fast technique to estimate concrete strength to ensure a safe construction of reinforced cement concrete infrastructures.  相似文献   
6.
The human concentrative nucleoside transporter (hCNT) protein family has three members, hCNT1, 2, and 3, encoded by SLC28A1, A2, and A3 genes, respectively. hCNT1 and hCNT2 translocate pyrimidine- and purine-nucleosides, respectively, by a sodium-dependent mechanism, whereas hCNT3 shows broad substrate selectivity and the unique ability of translocating nucleosides both in a sodium- and a proton-coupled manner. hCNT proteins are also responsible for the uptake of most nucleoside-derived antiviral and anticancer drugs. Thus, hCNTs are key pharmacological targets. This review focuses on several crucial aspects of hCNT biology and pharmacology: protein structure–function, structural determinants for transportability, pharmacogenetics of hCNT-encoding genes, role of hCNT proteins in nucleoside-based therapeutics, and finally hCNT physiology.  相似文献   
7.
利用分子对接技术虚拟筛选菊苣与肠道浓度型核苷转运蛋白2(CNT2)结合的化学成分,为探讨菊苣干预嘌呤核苷吸收的降尿酸作用机制研究提供理论依据。采用同源建模手段构建人CNT2三维结构模型,采用Vina软件虚拟筛选菊苣小分子化合物作用于CNT2的化学成分。以CNT2抑制剂7,8,3'-三羟基黄酮的打分为阈值,筛选出23个打分高于阳性抑制剂的菊苣化学成分。其中打分靠前的菊苣化合物是菊苣降尿酸作用的重要化合物,其能否通过抑制CNT2活性干预肠道嘌呤核苷的吸收降低体内尿酸水平有待生物学实验进一步探讨。CNT2可能是菊苣降尿酸的效用靶点,为指导实验研究菊苣干预嘌呤核苷吸收降尿酸研究提供向导。  相似文献   
8.
The concentrative nucleoside transporter family,SLC28   总被引:13,自引:0,他引:13  
The SLC28 family consists of three subtypes of sodium-dependent, concentrative nucleoside transporters, CNT1, CNT2, and CNT3 (SLC28A1, SLC28A2, and SLC28A3, respectively), that transport both naturally occurring nucleosides and synthetic nucleoside analogs used in the treatment of various diseases. These subtypes differ in their substrate specificities: CNT1 is pyrimidine-nucleoside preferring, CNT2 is purine-nucleoside preferring, and CNT3 transports both pyrimidine and purine nucleosides. Recent studies have identified key amino acid residues that are determinants of pyrimidine and purine specificity of CNT1 and CNT2. The tissue distributions of the CNTs vary: CNT1 is localized primarily in epithelia, whereas CNT2 and CNT3 have more generalized distributions. Nucleoside transporters in the SLC28 and SLC29 families play critical roles in nucleoside salvage pathways where they mediate the first step of nucleotide biosynthesis. In addition, these transporters work in concert to terminate adenosine signaling. SLC28 family members are crucial determinants of response to a variety of anticancer and antiviral nucleoside analogs, as they modulate the entry of these analogs into target tissues. Further, this family is involved in the absorption and disposition of many nucleoside analogs. Several CNT single nucleoside polymorphisms (SNPs) have been identified, but have yet to be characterized.  相似文献   
9.
Oral drug absorption is a process influenced by the physicochemical and biopharmaceutical properties of the drug and its inter-relationship with the gastrointestinal tract. Drug solubility, dissolution and permeability across intestinal barrier are the key parameters controlling absorption. This review provides an overview of the factors that affect drug absorption and the classification of a drug on the basis of solubility and permeability. The biopharmaceutical classification system (BCS) was introduced in early 90׳s and is a regulatory tool used to predict bioavailability problems associated with a new entity, thereby helping in the development of a drug product. Strategies to combat solubility and permeability issues are also discussed.  相似文献   
10.
The synthesis of new biobased polyamides from different β‐cyclodextrin monomers and the (Z) octadec‐9‐enedioic acid is investigated. The aim of this study is to design different sensors, having different sensibilities and selectivities to a set of various volatile organic compounds (VOC) relevant in the early detection of lung cancer. The sensors are obtained from the synthesized polyamides, using multiwalled carbon nanotubes as conductive nanofillers and a layer by layer process. The conductive polymer nanocomposites (CPC) designed from the heptakis‐6‐amino β‐cyclodextrin and 6A,6D diamino β‐cyclodextrin have a high affinity for polar protic solvents, while the CPC having a matrix based on 6A,6D diamino 2A G,3A‐G,6B,6C,6E,6F,6G nonadeca‐O‐benzyl‐β‐cyclodextrin develops hydrophobic interactions with nonpolar solvents. Due to a higher accessibility of cyclodextrin, the chemoresistive response of the hydrophilic linear polyamide CPC is larger than one of the hydrophilic branched polyamide CPC. As required, the VOC diffusion/desorption phenomenon is reversible for all the sensors.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号