首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The drug delivery of candesartan cilexetil encounters an obstacle of low absolute oral bioavailability which is attributed mainly to its low aqueous solubility and efflux by intestinal P-glycoprotein (P-gp) transporters. However, the extent of P-gp contribution in the reduced oral bioavailability of candesartan cilexetil is not clear. In this study, a previously developed candesartan cilexetil–loaded self-nanoemulsifying drug delivery system (SNEDDS) was evaluated for its ability to increase the drug oral bioavailability via the inhibition of intestinal P-gp transporters. Despite the developed SNEDDS showing P-gp inhibition activity, P-gp–mediated efflux was found to have a minor role in the reduced oral bioavailability of candesartan cilexetil. On the other hand, the high surfactant concentration used in SNEDDS formulation represents a major challenge toward their widespread application especially for chronically administered drugs. The designed acute and subacute toxicity studies revealed that the degree of intestinal mucosal damage decreases as the treatment period increases. The latter observation was attributed to the reversibility of surfactant-induced mucosal damage. Thus, the developed SNEDDS could be considered as a promising delivery system for enhancing the oral bioavailability of chronically administered drugs.  相似文献   

2.
Cancer cells reprogram their gene expression to promote growth, survival, proliferation, and invasiveness. The unique expression of certain uptake transporters in cancers and their innate function to concentrate small molecular substrates in cells make them ideal targets for selective delivering imaging and therapeutic agents into cancer cells. In this review, we focus on several solute carrier (SLC) transporters known to be involved in transporting clinically used radiopharmaceutical agents into cancer cells, including the sodium/iodine symporter (NIS), norepinephrine transporter (NET), glucose transporter 1 (GLUT1), and monocarboxylate transporters (MCTs). The molecular and functional characteristics of these transporters are reviewed with special emphasis on their specific expressions in cancers and interaction with imaging or theranostic agents [e.g., I-123, I-131, 123I-iobenguane (mIBG), 18F-fluorodeoxyglucose (18F-FDG) and 13C pyruvate]. Current clinical applications and research areas of these transporters in cancer diagnosis and treatment are discussed. Finally, we offer our views on emerging opportunities and challenges in targeting transporters for cancer imaging and treatment. By analyzing the few clinically successful examples, we hope much interest can be garnered in cancer research towards uptake transporters and their potential applications in cancer diagnosis and treatment.  相似文献   

3.
Cynomolgus macaques are used in preclinical studies in part because of their evolutionary closeness to humans. However, drug transporters [including solute carrier (SLC) transporters] essential for the absorption and excretion of drugs have not been fully investigated at the molecular level in cynomolgus macaques. We identified and characterized cynomolgus macaque SLC15A1, SLC15A2, SLC22A1, SLC22A2, SLC22A6, SLC22A8, SLC47A1, and SLC47A2, along with SLCO (formerly SLC21A) transporters SLCO1A2, SLCO1B1, SLCO1B3, and SLCO2B1. These cynomolgus SLC transporters had high amino acid sequence identities (92–97%) with their human orthologs and contained sequence motifs characteristic of SLC transporters. Phylogenetic analysis showed that these cynomolgus SLC transporters were more closely clustered with their human orthologs than with those of dogs, rats, or mice. Gene structure and genomic organization were similar in macaques and humans. Cynomolgus SLC transporter mRNAs showed distinct tissue expression patterns, being most abundantly expressed in jejunum (SLC15A1), liver (SLC22A1, SLCO1B1, and SLCO2B1), and kidney (SLC15A2, SLC22A2, SLC22A6, SLC22A8, SLC47A1, SLC47A2, and SLCO1A2). In contrast, cynomolgus SLCO2B1 mRNA was more ubiquitously expressed. Among these SLC mRNAs, the most abundant in liver was SLCO1B1, in jejunum SLC15A1, and in kidney SLC22A2. These results suggest similar characteristics of SLC transporters in cynomolgus macaques and humans.  相似文献   

4.
BackgroundCisplatin (CSP) is a potent anticancer drug widely used in treating glioblastoma multiforme (GBM). However, CSP's clinical efficacy in GBM contrasted with low therapeutic ratio, toxicity, and multidrug resistance (MDR). Therefore, we have developed a system for the active targeting of cisplatin in GBM via cisplatin loaded polymeric nanoplatforms (CSP-NPs).MethodsCSP-NPs were prepared by modified double emulsion and nanoprecipitation techniques. The physiochemical characterizations of CSP-NPs were performed using zeta sizer, scanning electron microscopy (SEM), drug release kinetics, and drug content analysis. Cytotoxicity, induction of apoptosis, and cell cycle-specific activity of CSP-NPs in human GBM cell lines were evaluated by MTT assay, fluorescent microscopy, and flow cytometry. Intracellular drug uptake was gauged by fluorescent imaging and flow cytometry. The potential of CSP-NPs to inhibit MDR transporters were assessed by flow cytometry-based drug efflux assays.ResultsCSP-NPs have smooth surface properties with discrete particle size with required zeta potential, polydispersity index, drug entrapment efficiency, and drug content. CSP-NPs has demonstrated an ‘initial burst effect’ followed by sustained drug release properties. CSP-NPs imparted dose and time-dependent cytotoxicity and triggered apoptosis in human GBM cells. Interestingly, CSP-NPs significantly increased uptake, internalization, and accumulations of anticancer drugs. Moreover, CSP-NPs significantly reversed the MDR transporters (ABCB1 and ABCG2) in human GBM cells.ConclusionThe nanoparticulate system of cisplatin seems to has a promising potential for active targeting of cisplatin as an effective and specific therapeutic for human GBM, thus eliminating current chemotherapy's limitations.  相似文献   

5.
The present study investigated the effect of the continentalic acid (CNT) isolated from the Aralia Continentalis against the LPS and E. coli-induced nephrotoxicity. The LPS and E. coli administration markedly altered the behavioral parameters including spontaneous pain, tail suspension and survival rate. However, the treatment with CNT dose dependently improved the behavioral parameters. The CNT treatment significantly improved the renal functions test (RFTs) and hematological parameters following LPS and E. coli-induced kidney injury. Furthermore, the LPS and E. coli administration markedly compromised the anti-oxidant enzymes and enhanced the oxidative stress markers. However, the CNT treatment markedly enhanced the anti-oxidants enzymes such as GSH, GST, Catalase and SOD, while attenuated the oxidative stress markers such as MDA and POD. The MPO enzyme is widely used marker for the neutrophilic infiltration, the LPS and E. coli administration markedly increased the MPO activity. However, the CNT treatment markedly attenuated the MPO activity in both LPS and E. coli-induced kidney injury. Furthermore, the CNT treatment markedly attenuated the NO production compared to the LPS and E. coli-induced kidney injury group. Additionally, the CNT treatment improved the histological parameters markedly (H and E, PAS and Masson’s trichome staining) and protect the kidney from the inflammatory insult of the LPS and E. coli evidently. The comet assay revealed marked DNA damage, however, the CNT treatment markedly prevented the LPS and E. coli-induced kidney damage. The CNT treatment markedly enhanced the expression of Nrf2, while attenuated the iNOS expression in both models of kidney injury.  相似文献   

6.
In this study, a modified dissolution apparatus was developed by equipping a USP apparatus Ⅰ with an open-loop system to discriminate the dissolution capacity in vitro and establish an in vitro and in vivo correlation (IVIVC) for mycophenolate mofetil (MMF) tablets. MMF had strong pH-dependent solubility that could influence the dissolution rate in vivo after the meal. Dissolution tests involving reference (Cellcept®) and test formulations (F1 and F2) were conducted using pH 4.5 acetate buffer to simulate gastric fluids in the fed state. The dissolution profiles of the reference and test formulations were distinguished by using the modified dissolution apparatus and compared with those determined using the USP apparatuses Ⅱ and Ⅳ, and the dissolution capacities of the formulations were discriminated at different sampling time-points. The results of human bioequivalence (BE) studies in the fed state were consistent with in vitro evaluations that the maximum concentrations (Cmax, in vivo) of both F1 and F2 fell below the acceptable range (80.00%). A level A IVIVC between the absorption fraction in vivo and dissolution in vitro, and a level C correlation between Cmax, in vivo and Cmax, in vitro, were established to guide the optimization of the tablet formulation containing MMF.  相似文献   

7.
《药学学报(英文版)》2020,10(10):2002-2009
Polyethylene glycols (PEGs) in general use are polydisperse molecules with molecular weight (MW) distributed around an average value applied in their designation e.g., PEG 4000. Previous research has shown that PEGs can act as P-glycoprotein (P-gp) inhibitors with the potential to affect the absorption and efflux of concomitantly administered drugs. However, questions related to the mechanism of cellular uptake of PEGs and the exact role played by P-gp has not been addressed. In this study, we examined the mechanism of uptake of PEGs by MDCK-mock cells, in particular, the effect of MW and interaction with P-gp by MDCK-hMDR1 and A549 cells. The results show that: (a) the uptake of PEGs by MDCK-hMDR1 cells is enhanced by P-gp inhibitors; (b) PEGs stimulate P-gp ATPase activity but to a much lesser extent than verapamil; and (c) uptake of PEGs of low MW (<2000 Da) occurs by passive diffusion whereas uptake of PEGs of high MW (>5000 Da) occurs by a combination of passive diffusion and caveolae-mediated endocytosis. These findings suggest that PEGs can engage in P-gp-based drug interactions which we believe should be taken into account when using PEGs as excipients and in PEGylated drugs and drug delivery systems.  相似文献   

8.
《药学学报(英文版)》2020,10(5):850-860
Organic anion transporting polypeptide 1B1 and 1B3 (OATP1B1/3) as important uptake transporters play a fundamental role in the transportation of exogenous drugs and endogenous substances into cells. Rat OATP1B2, encoded by the Slco1b2 gene, is homologous to human OATP1B1/3. Although OATP1B1/3 is very important, few animal models can be used to study its properties. In this report, we successfully constructed the Slco1b2 knockout (KO) rat model via using the CRISPR/Cas9 technology for the first time. The novel rat model showed the absence of OATP1B2 protein expression, with no off-target effects as well as compensatory regulation of other transporters. Further pharmacokinetic study of pitavastatin, a typical substrate of OATP1B2, confirmed the OATP1B2 function was absent. Since bilirubin and bile acids are the substrates of OATP1B2, the contents of total bilirubin, direct bilirubin, indirect bilirubin, and total bile acids in serum are significantly higher in Slco1b2 KO rats than the data of wild-type rats. These results are consistent with the symptoms caused by the absence of OATP1B1/3 in Rotor syndrome. Therefore, this rat model is not only a powerful tool for the study of OATP1B2-mediated drug transportation, but also a good disease model to study hyperbilirubinemia-related diseases.  相似文献   

9.
Imipenem is a carbapenem antibiotic. However, Imipenem could not be marketed owing to its instability and nephrotoxicity until cilastatin, an inhibitor of renal dehydropeptidase-I (DHP-I), was developed. In present study, the potential roles of renal organic anion transporters (OATs) in alleviating the nephrotoxicity of imipenem by cilastatin were investigated in vitro and in rabbits. Our results indicated that imipenem and cilastatin were substrates of hOAT1 and hOAT3. Cilastatin inhibited hOAT1/3-mediated transport of imipenem with IC50 values comparable to the clinical concentration, suggesting the potential to cause a clinical drug–drug interaction (DDI). Moreover, imipenem exhibited hOAT1/3-dependent cytotoxicity, which was alleviated by cilastatin and probenecid. Furthermore, cilastatin and probenecid ameliorated imipenem-induced rabbit acute kidney injury, and reduced the renal secretion of imipenem. Cilastatin and probenecid inhibited intracellular accumulation of imipenem and sequentially decreased the nephrocyte toxicity in rabbit primary proximal tubule cells. Renal OATs, besides DHP-I, was also the target of interaction between imipenem and cilastatin, and contributed to the nephrotoxicity of imipenem. This therefore gives in part the explanation about the mechanism by which cilastatin protected against imipenem-induced nephrotoxicity. Thus, OATs can potentially be used as a therapeutic target to avoid the renal adverse reaction of imipenem in clinic.  相似文献   

10.
This study revealed the importance of serine 318 (S318) residue for proton-coupled folate transporter (PCFT, SLC46A1) functioning. Substitution of S318 with arginine or lysine impaired transport of methotrexate (MTX), but substitution with alanine (has a simple side chain structure), or cysteine (structurally similar to serine), had no significant effect on MTX transport. The initial uptake rate of MTX by S318A and S318C mutant at pH 5.0, followed by Michaelis–Menten kinetics with a Km value of approximately 2.3 μM (for S318A) and 2.9 μM (for S318C), was similar to that of the wild-type. The normalized Vmax value of the S318A mutant, calculated by dividing the Vmax value by the Western blot protein band's relative intensity, was approximately 2-fold greater than that of the wild-type. The normalized Vmax value of the S318C mutant was approximately 0.8-fold smaller than the wild-type. Results obtained showed that the substitution of S318 with basic amino acid residues results in the loss of transport activity, even though PCFT mutants are expressed at the cell membrane. Alternatively, the substitution of S318 with neutral amino acids did not significantly affect the transport function of PCFT.  相似文献   

11.
  1. The concentrative nucleoside transporters (CNT; solute carrier family 28 (SLC28)) and the equilibrative nucleoside transporters (ENT; solute carrier family 29 (SLC29)) are important therapeutic targets but may also mediate toxicity or adverse events.

  2. To explore the relative role of the base and the monosaccharide moiety in inhibitor selectivity we selected compounds that either harbor an arabinose moiety or a cytosine moiety, as these groups had several commercially available drug members.

  3. The screening data showed that more compounds harboring a cytosine moiety displayed potent interactions with the CNTs than compounds harboring the arabinose moiety. In contrast, ENTs showed a preference for compounds with an arabinose moiety.

  4. The correlation between CNT1 and CNT3 was good as five of six compounds displayed IC50 values within the threefold threshold and one displayed a borderline 4-fold difference. For CNT1 and CNT2 as well as for CNT2 and CNT3 only two of six IC50 values correlated and one displayed a borderline 4-fold difference. Interestingly, of the six compounds that potently interacted with both ENT1 and ENT2 only nelarabine displayed selectivity.

  5. Our data show differences between inhibitor selectivities of CNTs and ENTs as well as differences within the CNT family members.

  相似文献   

12.
Most quantitative research methods are based on measuring either the total or the free concentration of an analyte in a sample. However, this is often insufficient for the study of complex biological systems. The main objective of this research was to develop new methods for providing more information from samples: the free concentration (Cf), the total concentration (Ct), and the plasma binding capacity (PBC). Samples were processed using microextraction and ultrafiltration. For each of these techniques, two quantification procedures were used: addition of isotopically labeled standard and repeated analysis of the same sample. The new methods were validated by analyzing clinical samples and samples with known concentrations. Methods based on addition of labeled compound were found to be the fastest, and most reproducible. For analysis of clinical samples, methods based on microextraction were more sensitive and more accurate than those based on ultrafiltration. For analysis of pooled plasma samples, the overall accuracy of all approaches to determine PBC, testosterone Cf, and testosterone Ct was between 94 and 109%, 87–113%, and 94–122% respectively. The new approach goes beyond a simple concentration measurement, giving more information from clinical samples, with great potential for personalizing drug dosage and therapy to the needs of individual patients.  相似文献   

13.
Valproate (VPA), an antiepileptic drug, is known to inhibit histone deacetylases (HDACs). Exposure to VPA during pregnancy increases several fetal risks. The maintenance of folate level during pregnancy is essential for adequate fetal development, and the placenta plays a critical role in supplying nutrients to the fetus. The aim of this study was to elucidate the effects of VPA on the gene expression of folate carriers and metabolizing enzymes in the rat placenta at both mid and late gestation periods. Pregnant rats were orally administered VPA on a single day or 4 days (repeated administration). Gene expression of folate carriers (Folr1, Slc19a1, Slc46a1) and metabolizing enzymes (Cth, Mtr, Mtrr, Mthfr, Dhfr) was assessed in the placenta on gestational day (GD) 13 or GD20. In the control rats, the expression of Folr1, Slc46a1, Cth, and Mthfr tended to be upregulated, whereas that of Mtrr and Dhfr was downregulated during gestation; the expression of Slc19a1 and Mtr did not change. Repeated VPA administration reduced the placental expression of Folr1and Mtr on GD20 and increased the expression of Dhfr on GD13 compared with the control. These findings indicate that administration of VPA alters the placental gene expression of folate carriers and metabolism-related enzymes.  相似文献   

14.
The Wnt/β-catenin signaling pathway is dysregulated in diseases and Wnt inhibitors like PRI-724 are in clinical development. This study evaluated the regulatory actions of PRI-724 and other Wnt inhibitors on the transport activity of human renal Organic anion transporters (OATs) and Organic anion transporting polypeptides (OATPs). The substrate uptake by OAT4 and OATP2B1 was markedly decreased by PRI-724 (Vmax/Km: ~26% and ~17% of corresponding control), with less pronounced decreases in OAT1, OAT3 and OAT1A2. PRI-724 decreased the plasma membrane expression of inhibited OATs/OATPs but didn't affect their total cellular expression. Two model Wnt inhibitors - FH535 and 21H7 - were also tested in comparative studies. Like PRI-724, they also strongly decreased the activities and membrane expression of multiple OATs/OATPs. In contrast, FH535 didn't affect the substrate uptake by organic cation transporters. In control studies, the EGFR inhibitor lapatinib did not inhibit the function of some OATs/OATPs. Together these findings suggest that Wnt inhibitors selectively modulate the function of multiple organic anions transporters, so their clinical use may have unanticipated effects on drug entry into cells. These findings are pertinent to current clinical trials that have been designed to understand the safety and efficacy of new Wnt inhibitor drugs.  相似文献   

15.
Kidney slice has been often used as a tool reflecting basolateral transport in renal tubular epithelial cells. Recently, we reported that several important apical reabsorptive transporters such as Octn1/2, Sglt1/2, and Pept1/2 were functional in mouse kidney slices as well as transporter activities in basolateral side, which have been well accepted. Because rats are often used for preclinical pharmacodynamic and pharmacokinetic studies as well as mice, it is important to confirm applicability of rat kidney slices for evaluation of apically expressed transporters. The present study investigates usefulness of kidney slices from rats for evaluation of apical membrane transporters for efflux (multidrug resistance 1a, mdr1a) as well as influx (Octn1/2, Sglt1/2, Pept1/2). Na+-dependent uptake of ergothioneine (Octn1), carnitine (Octn2), and methyl-α-D-glucopyranoside (Sglt1/2) by rat kidney slices was observed, and the uptake was decreased by selective inhibitors. In addition, uptake of glycyl-sarcosine (Pept1/2) showed H+-dependence and was decreased by selective inhibitor. Furthermore, accumulation of mdr1a substrate azasetron was increased in the presence of zosuquidar, an mdr1a inhibitor, while strain differences existed. In conclusion, rat kidney slices should be useful for evaluation of renal drug disposition regulated by transporters in apical as well as basolateral membranes of rat renal proximal tubule cells.  相似文献   

16.
17.
Thymoquinone is the most biologically active constituent of Nigella sativa (black seed). A monoterpene compound chemically known as 2-methyl-5-isopropyl-1, 4-quinone. In this study, the gender-dependent pharmacokinetic behavior of thymoquinone in rats was investigated. Thymoquinone was administered orally (20 mg/kg) and intravenously (5 mg/kg) to male and female rats and blood samples were collected at specific time points. Plasma concentration-time curves were plotted and pharmacokinetic parameters were determined using the non-compartmental analysis. In addition, simulations of steady state concentrations of thymoquinone in male and female rats were performed using GastroPlus PK software. After oral administration, the maximum plasma concentration (Cmax) of thymoquinone was 4.52 ± 0.092 μg/ml in male rats and 5.22 ± 0.154 μg/ml in female rats (p = 0.002). Similarly, after intravenous administration, the Cmax was 8.36 ± 0.132 μg/ml in males and 9.51 ± 0.158 μg/ml in females (p = 0.550). The area under the plasma concentration-time curve (AUC)0-∞ following oral dosing was 47.38 ± 0.821 μg/ml·h in females and 43.63 ± 0.953 μg/ml·h in males (p = 0.014). Pharmacokinetics and plasma concentration vs. time profiles for multiple oral doses of thymoquinone in rats were predicted using a simulation model to compare the simulation results with the experimental plasma pharmacokinetic data. The differences observed in thymoquinone pharmacokinetics between male and female rats after a single dose were not evident for the simulated steady-state parameters. The findings suggest that the gender difference does not seem to play a significant role in thymoquinone disposition at steady state.  相似文献   

18.
Some grapefruit juice (GFJ) ingredients and resveratrol, a fruit-derived phytoalexin, are known to inhibit cytochrome P450 (CYP) 2C9. However, their inhibition modes and detailed inhibition kinetics remain undetermined. This study aimed to investigate the inhibitory effects of two GFJ ingredients, bergamottin (BG) and dihydroxybergamottin (DHB), and resveratrol on CYP2C9 activity in vitro. DHB inhibited CYP2C9 activity, as assessed by warfarin 7-hydroxylation, in a preincubation time-dependent manner (i.e., mechanism-based inhibition; MBI), in the same manner as CYP2C19 and CYP3A4. The maximal inactivation rate (kinact,max) was 0.0638 min−1 and 0.12- and 0.26-fold of that for CYP2C19 and CYP3A4, respectively. BG showed both MBI and time-independent competitive inhibition. Resveratrol showed non-competitive inhibition with an inhibition constant (Ki) of 3.64 μM. Unlike the inhibition of CYP2C19 and CYP3A4, resveratrol did not induce MBI. These findings are important for estimating the risk of drug interactions between CYP2C9 substrates and some beverages. (146 words)  相似文献   

19.
《药学学报(英文版)》2020,10(1):159-170
MicroRNAs (miRNAs or miRs) are small noncoding RNAs derived from genome to control target gene expression. Recently we have developed a novel platform permitting high-yield production of bioengineered miRNA agents (BERA). This study is to produce and utilize novel fully-humanized BERA/miR-328-3p molecule (hBERA/miR-328) to delineate the role of miR-328-3p in controlling nutrient uptake essential for cell metabolism. We first demonstrated successful high-level expression of hBERA/miR-328 in bacteria and purification to high degree of homogeneity (>98%). Biologic miR-328-3p prodrug was selectively processed to miR-328-3p to suppress the growth of highly-proliferative human osteosarcoma (OS) cells. Besides glucose transporter protein type 1, gene symbol solute carrier family 2 member 1 (GLUT1/SLC2A1), we identified and verified large neutral amino acid transporter 1, gene symbol solute carrier family 7 member 5 (LAT1/SLC7A5) as a direct target for miR-328-3p. While reduction of LAT1 protein levels by miR-328-3p did not alter homeostasis of amino acids within OS cells, suppression of GLUT1 led to a significantly lower glucose uptake and decline in intracellular levels of glucose and glycolytic metabolite lactate. Moreover, combination treatment with hBERA/miR-328 and cisplatin or doxorubicin exerted a strong synergism in the inhibition of OS cell proliferation. These findings support the utility of novel bioengineered RNA molecules and establish an important role of miR-328-3p in the control of nutrient transport and homeostasis behind cancer metabolism.  相似文献   

20.
《药学学报(英文版)》2020,10(9):1669-1679
Proteolysis targeting chimeras (PROTACs) are dual-functional hybrid molecules that can selectively recruit an E3 ubiquitin ligase to a target protein to direct the protein into the ubiquitin-proteasome system (UPS), thereby selectively reducing the target protein level by the ubiquitin-proteasome pathway. Nowadays, small-molecule PROTACs are gaining popularity as tools to degrade pathogenic protein. Herein, we present the first small-molecule PROTACs that can induce the α1A-adrenergic receptor (α1A-AR) degradation, which is also the first small-molecule PROTACs for G protein-coupled receptors (GPCRs) to our knowledge. These degradation inducers were developed through conjugation of known α1-adrenergic receptors (α1-ARs) inhibitor prazosin and cereblon (CRBN) ligand pomalidomide through the different linkers. The representative compound 9c is proved to inhibit the proliferation of PC-3 cells and result in tumor growth regression, which highlighted the potential of our study as a new therapeutic strategy for prostate cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号