首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   6篇
  国内免费   6篇
耳鼻咽喉   2篇
妇产科学   11篇
基础医学   38篇
口腔科学   4篇
临床医学   2篇
内科学   19篇
皮肤病学   3篇
神经病学   7篇
特种医学   1篇
外科学   36篇
综合类   15篇
预防医学   1篇
药学   4篇
中国医学   1篇
肿瘤学   2篇
  2022年   2篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2016年   4篇
  2015年   8篇
  2014年   7篇
  2013年   5篇
  2012年   8篇
  2011年   9篇
  2010年   9篇
  2009年   8篇
  2008年   10篇
  2007年   9篇
  2006年   13篇
  2005年   8篇
  2004年   7篇
  2003年   10篇
  2002年   2篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1992年   1篇
  1987年   1篇
排序方式: 共有146条查询结果,搜索用时 46 毫秒
1.
目的:利用三维共培养技术体外构建含多种细胞的胰腺癌微组织,研究骨髓间充质干细胞(hBMSCs)、内皮细胞(HUVECs)对Panc-1胰腺癌细胞上皮间质转化的影响。方法:水凝胶复合细胞培养构建三维胰腺癌微组织模型。第一组:单纯Panc-1细胞;第二组:Panc-1细胞复合HUVECs;第三组:Panc-1细胞复合hBMSCs;第四组:Panc-1细胞复合HUVECs和hBMSCs。实时定量PCR分析胰腺癌肿瘤侵袭相关的基质金属蛋白酶(MMP-9)、肿瘤上皮间质化E-cadherin和Snail基因。Western blot测定胰腺癌肿瘤侵袭相关的MMP-9、肿瘤上皮间质化E-cadherin和Snail蛋白。结果:HUVECs共培养不影响MMP-9、E-cadherin和Snail基因和蛋白的表达(P>0.05),hBMSCs共培养促进MMP-9和Snail基因和蛋白的表达、抑制E-cadherin基因和蛋白的表达(P<0.05),同时加入两种细胞促进MMP-9和Snail基因和蛋白的表达、抑制E-cadherin基因和蛋白的表达(P<0.05)。结论:利用水凝胶为载体,加入骨髓间充质干细胞、内皮细胞与Panc-1胰腺癌细胞共培养,成功构建复杂的胰腺癌肿瘤微组织。通过对胰腺癌上皮间质转化相关机制研究,发现骨髓间充质干细胞通过调节MMP-9和上皮间质化对胰腺癌的侵袭行为起重要作用。  相似文献   
2.
BACKGROUND: Although a large number of related studies have been carried out, there is still a lack of practical methods to amplify hematopoietic stem cells (HSCs) in vitro. Mesenchymal stem cells (MSCs) secrete a variety of cytokines that promote the HSCs proliferation and inhibit their differentiation. These cytokines play an important role in maintaining the hematopoietic microenvironment and regulating HSCs function. OBJECTIVE: To investigate the effect of bone marrow MSCs on the proliferation of HSCs in vitro under different coculture modes. METHODS: Mesenchymal stem cells from the bone marrow of C57BL/6 mice were cultured in vitro using the whole bone marrow adherent culture. CD117+ cells (HSCs) were sorted from passage 3 cells by using miniMACS magnetic beads sorting. Then, CD117+ cells were co-cultured with MSCs under different coculture models, including single culture of HSCs (control group), Transwell coculture (upper chamber, HSCs; lower chamber, MSCs) and two-dimensional contact coculture (coculturing HSCs and MSCs in 24-well platts). The morphology of HSCs was observed under phase contrast microscope and fluorescence microscope, and the number of active cells of HSCs was counted at 1,3,5, and 7 days after coculture. RESULTS AND CONCLUSION: During the coculture of 1-7 days, the number of HSCs in the two groups was increased with culture time (P < 0.05). After 3 days of coculture, HSCs in each group was grown into the logarithmic growth phase, and morphological changes in some HSCs were detected at 5 days of coculture. Ait 7 days of coculture, the viabilities of HSCs in different culture models were ranked as follows: single culture model < Transwell coculture model < two-dimensional contact coculture model (P < 0.05). These findings suggest that MSCs can effectively promote the proliferation of HSCs in vitro, and the promotion effect is increased under contact coculture conditions. © 2018, Journal of Clinical Rehabilitative Tissue Engineering Research. All rights reserved.  相似文献   
3.
The lysosomal cysteine carboxypeptidase cathepsin X (CTSX), localized predominantly in immune cells, has been associated with the development and progression of cancer. To determine its specific role in colorectal carcinoma (CRC), we analyzed CTSX expression in non-malignant mucosa and carcinoma of 177 patients as well as in 111 adenomas and related it with clinicopathological parameters. Further, the role of CTSX in the adhesion and invasion of the colon carcinoma cell lines HT-29 and HCT116 was investigated in an in vitro culture cell system with fibroblasts and monocytes, reflecting the situation at the tumor invasion front.Epithelial CTSX expression significantly increased from normal mucosa to adenoma and carcinoma, with highest expression levels in high grade intraepithelial neoplasia and in early tumor stages. Loss of CTSX occurred with tumor progression, and correlated with advanced local invasion, lymph node and distal metastasis, lymphatic vessel and vein invasion, tumor cell budding and poorer overall survival of patients with CRC. The subcellular distribution of CTSX changed from vesicular paranuclear expression in the tumor center to submembranous expression in cells of the invasion front. Peritumoral macrophages showed highest expression of CTSX. In vitro assays identified CTSX as relevant factor for cell–cell adhesion and tumor cell anchorage to fibroblasts and basal membrane components, whereas inhibition of CTSX caused increased invasiveness of colon carcinoma cells in mono- and co-culture. In conclusion, CTSX is involved in early tumorigenesis and in the stabilization of tumor cell formation in CRC. The results suggest that loss of CTSX may be needed for tumor cell detachment, local invasion and tumor progression. In addition, CTSX in tumor-associated macrophages indicates a role for CTSX in the anti-tumor immune response.  相似文献   
4.
At present, the modern two-step fermentation process is one of the major approaches for the industrial production of vitamin C. The key step in this process is the conversion of L-sorbose to 2-keto-L-gulonic acid (2-KLG), the vitamin C precursor, which is accomplished by an artificial microbial ecosystem consisting of Ketogulonicigenium vulgare and Bacillus megaterium. This review describes current progress in understanding this ecosystem, not only the individual physiological characteristics of the two strains, but also the interactions between them. Special emphasis is placed on recent systems biology studies of the ecosystem. We also discuss the regulation and improvement of this ecosystem, including analysis of the fermentation medium components and genetic engineering and optimum fermentative strategies. Finally, perspectives on the knowledge and engineering of this important artificial microbial ecosystem are discussed.  相似文献   
5.
目的探讨低氧条件下细胞共培养体系中肺动脉内皮细胞经由Notch1/Jagged1信号通路调控肺动脉平滑肌细胞的增殖。方法建立Transwell共培养体系,将肺动脉内皮细胞(PAEC)和平滑肌细胞(PASMC)分别接种于下室和上室,PAEC经DAPT(Notch信号阻断剂)或(和)S iR-NA-Jagged1预处理后,与PASMC共同置入自动常压缺氧孵箱进行低氧处理。根据PAEC是否行DAPT、Jagged1小RNA干扰预处理进行实验分组:常氧时PAEC与PASMC共培养对照组(N)、低氧时PAEC与PASMC共培养组(H1)、低氧时DAPT(终浓度10μmol/L)预处理PAEC与PASMC共培养组(H2)、低氧时S iRNA-Jagged1预处理PAEC与PASMC共培养组(H3)、低氧时DAPT加S iRNA-Jagged1预处理PAEC与PASMC共培养组(H4)。用3H-TdR掺入法检测PAEC和PASMC增殖情况,RT-PCR检测PAEC中Notch1、Jagged1 mRNA表达水平。结果低氧时各组PAEC和PASMC的3H-TdR掺入量明显高于常氧共培养对照组(均P<0.01);与H1组比较,...  相似文献   
6.
Mechanical stress plays an important role in bone remodeling. However, it is still unclear whether mechanical stress regulates osteoclastogenesis mediated by mesenchymal stem cells (MSCs) during initial osteodifferentiation. We investigated the effects of static and dynamic pressures on osteoclast-inducing potential of MSCs during early osteodifferentiation. The osteoclastogenesis was examined using TRAP staining. The mRNA levels of receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) genes were analyzed using real-time RT-PCR. It was shown that MSCs exposed to either pressure during initial osteodifferentiation promoted osteoclastogenesis with the up-regulation of RANKL/OPG ratio. MSCs displayed diverse responses to pressures at different points of initial osteodifferentiation. The RANKL/OPG ratio was significantly increased after osteoinduction in the primary MSCs without pressures exposure, which contradicted the previous report. These results suggest novel mechanisms of the initial biological responses of bone remodeling upon mechanical stimuli.  相似文献   
7.
8.
目的 建立人牙周韧带细胞(human periodontal ligament cell,hPDLC)与人脐带间充质干细胞(human umbilical cord mesenchymal stem cell,hUCMSC)体外非接触式共培养模型,研究hUCMSC定向分化为hPDLC的可能性,探索新的可用于牙周组织工程的种子细胞.方法 利用跨室培养装置(Transwell)培养板建屯hPDLC与hUCMSC体外非接触式共培养模型,免疫组织化学方法 检测其骨桥蛋白(osteopontin,OPN)、骨钙素(ostocalcin,OCN)及骨涎蛋白(bone sialopmtein,BSP)的表达情况,并采用蛋白质印迹法从蛋白水平定量分析诱导后hUCMSC在分子水平的改变.结果 hUCMSC在非接触式共培养体系中可以被hPDLC诱导为多角形或梭形,蛋白质印迹法检测结果 显示,共培养3、7、14及21 d后的hUCMSC在蛋白水平OCN和OPN表达上调[OCN共培养前(0.88±0.21),共培养21 d(1.42±0.17);OPN共培养前(0.93±0.13),共培养21 d(1.43±0.22)];BSP表达逐渐下调[共培养前(1.60±0.09),培养21 d(0.75±0.20)],与共培养前相比差异均有统计学意义(P<0.05).结论 hUCMSC在一定条件下可向hPDLC定向分化,并有望成为牙周组织工程的种子细胞.  相似文献   
9.
The potential for adipose‐derived stem cells to differentiate into keratinocyte‐like cells has recently been receiving attention, stemming from the hypothesis that a bioengineered skin may be manufactured from these readily available mesenchymal stem cells. This study was conducted to evaluate the influence of human keratinocyte non‐contact coculture on hADSCs. Human epidermal keratinocytes and hADSCs obtained by lipoaspiration were cultured in keratinogenic growth media, which were divided into the following groups: human adipose‐derived stem cell (hADSC) monoculture, non‐contact coculture of hADSCs and human keratinocytes and keratinocyte monoculture. Cell proliferation was assessed, and keratogenicity was analysed through immunocytochemistry and polymerase chain reaction of early, intermediate and late keratogenic markers. hADSCs cocultured with keratinocytes displayed enhanced proliferation compared with the monoculture group. After a 7‐day coculture period, immunohistochemistry and polymerase chain reaction findings revealed the presence of specific keratinocyte markers in the coculture group. This study demonstrates that hADSCs cocultured with keratinocytes have the capacity to transdifferentiate into keratinocyte lineage cells, and suggests that adipose tissue may be a source of keratinocytes that may further be used in structuring the bioengineered skin.  相似文献   
10.
目的探讨SD大鼠来源的髓核(nucleus pulposus,NP)细胞促使脂肪间充质干细胞(adipose tissue-derived mesenchymal stem cells,AMSCs)向NP样细胞定向分化的分子机制。方法采用酶消化法取脂肪细胞,极限稀释法纯化细胞;采用组织块培养法培养NP细胞。利用流式细胞技术,免疫荧光及RT-PCR检测对AMSCs及NP细胞进行鉴定。结果 AMSCs中Sca-1和CD44的阳性率较高,而CD45和CD11b阴性,共培养组荧光强度明显亮于单纯AMSCs组,AMSCs在NP细胞的诱导下聚焦蛋白聚糖(Aggrecan)、Ⅱ型胶原蛋白(CollagenⅡ)、Sox-9等表达水平较对照组高。结论共培养环境中髓核细胞分泌的可溶性因子TGF-1能促使AMSCs向NP样细胞定向分化。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号