首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   4篇
基础医学   1篇
内科学   1篇
神经病学   1篇
外科学   6篇
眼科学   6篇
药学   3篇
肿瘤学   4篇
  2022年   1篇
  2020年   2篇
  2018年   1篇
  2017年   1篇
  2014年   3篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
Age-related cataract, an opacity of the eye lens, is the leading cause of visual impairment in the elderly, the etiology of which is related to oxidative stress damage. Oxidation of methionine to methionine sulfoxide is a major oxidative stress product that reaches levels as high as 60% in cataract while being essentially absent from clear lenses. Methionine oxidation results in loss of protein function that can be reversed through the action of methionine sulfoxide reductase A (MsrA), which is implicated in oxidative stress protection and is an essential regulator of longevity in species ranging from Escherichia coli to mice. To establish a role for MsrA in lens protection against oxidative stress, we have examined the levels and spatial expression patterns of MsrA in the human lens and have tested the ability of MsrA to protect lens cells directly against oxidative stress. In the present report, we establish that MsrA is present throughout the human lens, where it is likely to defend lens cells and their components against methionine oxidation. We demonstrate that overexpression of MsrA protects lens cells against oxidative stress damage, whereas silencing of the MsrA gene renders lens cells more sensitive to oxidative stress damage. We also provide evidence that MsrA is important for lens cell function in the absence of exogenous stress. Collectively, these data implicate MsrA as a key player in lens cell viability and resistance to oxidative stress, a major factor in the etiology of age-related cataract.  相似文献   
2.
The immune system is designed to protect the organism from infection and to repair damaged tissue. An effective response requires recognition of the threat, the appropriate effector mechanism to clear the pathogen and a return to homeostasis with minimal damage to self-tissues. T cells play a central role in orchestrating the immune response at all stages of the response and have been the subject of intense study by both experimental immunologists and modelers. This review examines some of the more critical questions in T cell biology and describes the latest attempts to address those questions using approaches that combine mathematical modeling and experiments.  相似文献   
3.
4.
TGFbeta inducible early gene-1 (TIEG) was originally cloned from human osteoblasts (OB) and has been shown to play an important role in TGFbeta/Smad signaling, regulation of gene expression and OB growth and differentiation. To better understand the biological role of TIEG in the skeleton, we have generated congenic TIEG-null (TIEG(-/-)) mice in a pure C57BL/6 background. Through the use of DXA and pQCT analysis, we have demonstrated that the femurs and tibias of two-month-old female TIEG(-/-) mice display significant decreases in total bone mineral content, density, and area relative to wild-type (WT) littermates. However, no differences were observed for any of these bone parameters in male mice. Further characterization of the bone phenotype of female TIEG(-/-) mice involved mechanical 3-point bending tests, micro-CT, and histomorphometric analyses of bone. The 3-point bending tests revealed that the femurs of female TIEG(-/-) mice have reduced strength with increased flexibility compared to WT littermates. Micro-CT analysis of femurs of two-month-old female TIEG(-/-) mice revealed significant decreases in cortical bone parameters compared to WT littermates. Histomorphometric evaluation of the distal femur revealed that female TIEG(-/-) mice also display a 31% decrease in cancellous bone area, which is primarily due to a decrease in trabecular number. At the cellular level, female TIEG(-/-) mice exhibit a 42% reduction in bone formation rate which is almost entirely due to a reduction in double labeled perimeter. Differences in mineral apposition rate were not detected between WT and TIEG(-/-) mice. Taken together, these findings suggest that female TIEG(-/-) mice are osteopenic mainly due to a decrease in the total number of functional/mature OBs.  相似文献   
5.
Breast Cancer Research and Treatment - To identify the practice patterns related to use of surveillance mammography in male breast cancer (MaBC) survivors. Using administrative claims data from...  相似文献   
6.
7.
PURPOSE: To describe methods and results and to assess the value of a Traveling Vision Examiner (TVE) Program designed to provide masked vision measurements by expert vision examiners who were independent of, and traveled to, local clinical centers. METHODS: The Submacular Surgery Trials (SST) Pilot Study was conducted to refine the design and methods for a set of multicenter, randomized clinical trials to evaluate submacular surgery in patients with subfoveal choroidal neovascularization (CNV) due to age-related macular degeneration (AMD) or ocular histoplasmosis (OHS), or idiopathic CNV in which the primary study outcome would be change in 2-year best-corrected vision from baseline. As part of the SST Pilot Study, the feasibility and value of a TVE Program was assessed. The goal of the program was to obtain unbiased vision measurements, according to a standard protocol, of best-corrected visual acuity, reading speed, and contrast threshold, of each patient at 2 and 4 years after enrollment. RESULTS: Eighty-three visits by TVEs were made to 16 centers participating in the SST Pilot Study; 239 patients had at least one masked vision examination. Comparison of pairs of vision measurements of the traveling vision examiners and local vision examiners for 71 patients made on the same day showed good agreement overall (intraclass correlation coefficient > or = 0.81). CONCLUSIONS: The proposed TVE Program was judged to be a feasible and useful method of providing standardized, unbiased, masked vision measurements. This approach was incorporated into the larger clinical trials conducted by the SST Research Group.  相似文献   
8.
9.
TGFβ Inducible Early Gene‐1 (TIEG1) knockout (KO) mice display a sex‐specific osteopenic phenotype characterized by low bone mineral density, bone mineral content, and overall loss of bone strength in female mice. We, therefore, speculated that loss of TIEG1 expression would impair the actions of estrogen on bone in female mice. To test this hypothesis, we employed an ovariectomy (OVX) and estrogen replacement model system to comprehensively analyze the role of TIEG1 in mediating estrogen signaling in bone at the tissue, cell, and biochemical level. Dual‐energy X‐ray absorptiometry (DXA), peripheral quantitative computed tomography (pQCT), and micro‐CT analyses revealed that loss of TIEG1 expression diminished the effects of estrogen throughout the skeleton and within multiple bone compartments. Estrogen exposure also led to reductions in bone formation rates and mineralizing perimeter in wild‐type mice with little to no effects on these parameters in TIEG1 KO mice. Osteoclast perimeter per bone perimeter and resorptive activity as determined by serum levels of CTX‐1 were differentially regulated after estrogen treatment in TIEG1 KO mice compared with wild‐type littermates. No significant differences were detected in serum levels of P1NP between wild‐type and TIEG1 KO mice. Taken together, these data implicate an important role for TIEG1 in mediating estrogen signaling throughout the mouse skeleton and suggest that defects in this pathway are likely to contribute to the sex‐specific osteopenic phenotype observed in female TIEG1 KO mice. © 2014 American Society for Bone and Mineral Research.  相似文献   
10.

Introduction  

We have previously demonstrated that endoxifen is the most important tamoxifen metabolite responsible for eliciting the anti-estrogenic effects of this drug in breast cancer cells expressing estrogen receptor-alpha (ERα). However, the relevance of ERβ in mediating endoxifen action has yet to be explored. Here, we characterize the molecular actions of endoxifen in breast cancer cells expressing ERβ and examine its effectiveness as an anti-estrogenic agent in these cell lines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号