首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
中国医学   1篇
  2018年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
目的:命名实体识别在自然语言处理中是最基本的任务之一,本文通过应用深度表示的方法实现临床上的现病史数据的自动标识。方法:本文随机选取了10 426条现病史句子作为主要的文本研究对象,分别用词嵌入(word2vec)和网络结构特征(node2vec)两种构建向量的方法生成不同的词向量特征,再在基于条件随机场(Conditional Random Field,CRF)和结构化支持向量机(Structured Support Vector Machines,SSVM)的方法上进行十重交叉验证,计算并比较基于深度表示的症状表型命名实体抽取的性能。结果:传统的CRF算法的三个评价指标(准确率,召回率,F 值)为(0.888 9,0.786 9,0.834 8);基于WENER方法下的CRF和SSVM的评价指标为(0.975 0,0.984 9,0.979 8)和(0.992 8,0.988 9,0.990 8);在GENER方法下基于词的CRF和SSVM算法的三个评价指标为(0.972 8,0.976 8,0.975 2)和(0.983 3,0.974 5,0.978 8);GENER方法下基于字的CRF和SSVM算法的评价指标为(0.927 8,0.862 8,0.887 9)和(0.943 7,0.946 8,0.941 3)。结论:深度表示的命名实体抽取算法性能要比传统的非深度表示的命名实体标识算法性能好。另外,通过比较深度表示的两种算法的性能后发现,无论是基于word2vec生成的词向量还是基于node2vec生成的词向量,SSVM模型算法性能均优于CRF算法的性能。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号