首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   340篇
  免费   16篇
  国内免费   1篇
耳鼻咽喉   2篇
儿科学   2篇
妇产科学   6篇
基础医学   46篇
口腔科学   6篇
临床医学   22篇
内科学   81篇
皮肤病学   3篇
神经病学   41篇
特种医学   10篇
外科学   21篇
综合类   1篇
一般理论   2篇
预防医学   30篇
眼科学   18篇
药学   37篇
肿瘤学   29篇
  2023年   10篇
  2022年   1篇
  2021年   15篇
  2020年   6篇
  2019年   17篇
  2018年   8篇
  2017年   12篇
  2016年   13篇
  2015年   13篇
  2014年   21篇
  2013年   16篇
  2012年   42篇
  2011年   38篇
  2010年   12篇
  2009年   7篇
  2008年   17篇
  2007年   22篇
  2006年   14篇
  2005年   27篇
  2004年   21篇
  2003年   7篇
  2002年   9篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1991年   2篇
排序方式: 共有357条查询结果,搜索用时 140 毫秒
1.
2.
Rats emit high-frequency 50-kHz ultrasonic vocalizations (USV) in appetitive situations like social interactions. Drugs of abuse are probably the most potent non-social elicitors of 50-kHz USV, possibly reflecting their euphorigenic properties. Psychostimulants induce the strongest elevation in 50-kHz USV emission, particularly amphetamine (AMPH), either when applied systemically or locally into the nucleus accumbens (Nacc). Emission of AMPH-induced 50-kHz USV depends on test context, such as the presence of conspecifics, and can be manipulated pharmacologically by targeting major neurotransmitter systems, including dopamine (DA), noradrenaline (NA), and serotonin (5-HT), but also protein kinase C (PKC) signaling. Several D1 and D2 receptor antagonists, as well as typical and atypical antipsychotics block the AMPH-induced elevation in 50-kHz USV. Inhibiting D1 and D2 receptors in the Nacc abolishes AMPH-induced 50-kHz USV, indicating a key role for this brain area. NA neurotransmission also regulates AMPH-induced 50-kHz USV emission given that α1 receptor antagonists and α2 receptor agonists exert attenuating effects. Supporting the involvement of the 5-HT system, AMPH-induced 50-kHz USV are attenuated by 5-HT2C receptor activation, whereas 5-HT2C receptor antagonism leads to the opposite effect. Finally, treatment with lithium, tamoxifen, and myricitrin was all found to result in a complete abolishment of the AMPH-induced increase in 50-kHz USV, suggesting the involvement of PKC signaling. Neurotransmitter systems involved in AMPH-induced 50-kHz USV emission only partially overlap with other AMPH-induced behaviors like hyperlocomotion. The validity of AMPH-induced 50-kHz USV as a preclinical model for neuropsychiatric disorders is discussed, particularly with relevance to altered drive and mood seen in bipolar disorder.  相似文献   
3.
4.
Glucocorticoids (GCs) are the standard therapy for treating multiple sclerosis (MS) patients suffering from an acute relapse. One of the main mechanisms of GC action is held to be the induction of T cell apoptosis leading to reduced lymphocyte infiltration into the CNS, yet our analysis of experimental autoimmune encephalomyelitis (EAE) in three different strains of genetically manipulated mice has revealed that the induction of T cell apoptosis is not essential for the therapeutic efficacy of GCs. Instead, we identified the redirection of T cell migration in response to chemokines as a new therapeutic principle of GC action. GCs inhibited the migration of T cells towards CCL19 while they enhanced their responsiveness towards CXCL12. Importantly, blocking CXCR4 signaling in vivo by applying Plerixafor® strongly impaired the capacity of GCs to interfere with EAE, as revealed by an aggravated disease course, more pronounced CNS infiltration and a more dispersed distribution of the infiltrating T cells throughout the parenchyma. Our observation that T cells lacking the GC receptor were refractory to CXCL12 further underscores the importance of this pathway for the treatment of EAE by GCs. Importantly, methylprednisolone pulse therapy strongly increased the capacity of peripheral blood T cells from MS patients of different subtypes to migrate towards CXCL12. This indicates that modulation of T cell migration is an important mechanistic principle responsible for the efficacy of high-dose GC therapy not only of EAE but also of MS.  相似文献   
5.
6.
Mucosal vaccination via the respiratory tract can elicit protective immunity in animal infection models, but the underlying mechanisms are still poorly understood. We show that a single intranasal application of the replication-deficient modified vaccinia virus Ankara, which is widely used as a recombinant vaccination vector, results in prominent induction of bronchus-associated lymphoid tissue (BALT). Although initial peribronchiolar infiltrations, characterized by the presence of dendritic cells (DCs) and few lymphocytes, can be found 4 d after virus application, organized lymphoid structures with segregated B and T cell zones are first observed at day 8. After intratracheal application, in vitro–differentiated, antigen-loaded DCs rapidly migrate into preformed BALT and efficiently activate antigen-specific T cells, as revealed by two-photon microscopy. Furthermore, the lung-specific depletion of DCs in mice that express the diphtheria toxin receptor under the control of the CD11c promoter interferes with BALT maintenance. Collectively, these data identify BALT as tertiary lymphoid structures supporting the efficient priming of T cell responses directed against unrelated airborne antigens while crucially requiring DCs for its sustained presence.Bronchus-associated lymphoid tissue (BALT) is part of the mucosal immune system of the lung and is characterized by the aggregation of lymphoid cells at the bifurcations of the upper bronchioles (Bienenstock and Befus, 1984). Like other lymphoid follicles, BALT is composed of B cells surrounded by a parafollicular region of T cells (Sminia et al., 1989). Recirculating lymphocytes are believed to enter BALT via high endothelial venules and leave these structures by efferent lymphatics (Lührmann et al., 2002/2003; Xu et al., 2003). Although BALT is largely absent in normal mice, it spontaneously forms in mice deficient for the chemokine receptor CCR7 (Kocks et al., 2007). In humans, it is neither found at birth nor in healthy adults but transiently arises during childhood and adolescence (Tschernig and Pabst, 2000). In both humans and mice, pulmonary infection and inflammation can induce BALT (Moyron-Quiroz et al., 2004). Data derived from splenectomized lymphotoxin-α–deficient mice, which lack all secondary lymphoid organs but do develop BALT, suggest that BALT can serve as induction sites for adaptive immune responses to pathogens with lung tropism (Moyron-Quiroz et al., 2004). However, mechanisms that control the development and maintenance of BALT are largely unknown.Modified vaccinia virus Ankara (MVA) is a highly attenuated orthopoxvirus that lost its capacity to replicate in mammalian cells (Meyer et al., 1991). Recently, MVA was proposed to represent a useful agent for mucosal vaccination via the respiratory route in a nonhuman primate model (Corbett et al., 2008). In mice, MVA delivered via the intranasal (i.n.) route has been shown to induce long-lasting and protective antibody and T cell immune responses (Gherardi and Esteban, 2005; Kastenmuller et al., 2009). However, little is known about the immunological events after respiratory MVA infection.The present report demonstrates that a single i.n. application of the replication-deficient MVA is sufficient to induce the long-lasting presence of BALT and that the lung-specific depletion of DCs interferes with BALT maintenance. Ex vivo imaging of antigen-specific T cell–DC interactions within BALT by two-photon microscopy indicates that, independent of the specific antigenic challenge inducing its formation, BALT can function as a general priming site for T cell responses directed against antigens that reach the lower respiratory tract.  相似文献   
7.
Pain sensitivity is characterized by interindividual variability, determined by factors including genetic variation of nociceptive receptors and pathways. The sigma-1 receptor (SIGMAR1) is involved in pain modulation especially under pre-sensitized conditions. However, the contribution of SIGMAR1 genetic variants to pain generation and sensitivity is unknown yet. This study aimed to identify effects of 5 SIGMAR1 variants on the somatosensory phenotype of neuropathic pain patients (n?=?228) characterized by standardized quantitative sensory testing. Principal component analysis revealed that the SIGMAR1 variants ?297G>T (rs10814130) and 5A>C (rs1800866) significantly lowered thermal detection and heat/pressure nociception in particular in neuropathic pain patients with mainly preserved somatosensory function. Compared to wild-type, the variant allele ?297T was associated with loss of warm detection (P?=?.049), lower heat-pain sensitivity (P?=?.027) and wind-up ratio (P?=?.023) as well as increased paradoxical heat sensation (P?=?.020). Likewise for 5A>C the strongest genotype-associated differences observed were reduced peripheral (less heat hyperalgesia; P?=?.026) and central sensitization (lower mechanical pain sensitivity; P?=?.026) in variant compared to wild-type carriers. This study indicates lack of association of SIGMAR1 ?297G>T and 5A>C genetic variants to susceptibility to develop chronic pain, but significant modulation of somatosensory function in neuropathic pain patients.

Perspective

This article presents the first study indicating a modulation of somatosensory function in neuropathic pain patients by selected genetic variants in SIGMAR1. As our findings could contribute to the explanation of interindividual differences in drug response they might help to improve the treatment of neuropathic pain.  相似文献   
8.
OBJECTIVE: The CYP2D6 genotype is a major determinant of interindividual differences in metoprolol plasma clearance. Cytochrome P450 2D6 (CYP2D6) poor metabolizers exhibit 3- to 10-fold higher plasma concentrations after administration of metoprolol than extensive metabolizers. However, the impact of the CYP2D6 genotype on the occurrence of adverse effects of metoprolol remains controversial. This study addressed whether the incidence of poor metabolizers was higher in patients with metoprolol-associated adverse effects than in the German population at large. METHODS: Approximately 1200 German physicians were asked to report on patients who had experienced pronounced adverse effects in association with administration of metoprolol. CYP2D6 genotypes were determined with a combination of allele-specific polymerase chain reaction and polymerase chain reaction-restriction fragment length polymorphism. The adverse effects, consisting of symptoms related to beta-adrenergic receptor blockade and nonspecific symptoms, were recorded by use of a standardized questionnaire. RESULTS: Twenty-four patients were included in the study. Nine patients had 2 null alleles (poor metabolizer genotype; 38%); the remaining 15 had either 1 null allele (n = 7) or no null alleles (n = 8). Therefore the occurrences of poor metabolizer genotypes in the study population were 4.9- and 5.2-fold more frequent, respectively, than that found in unselected members of the German population in two large studies (P <.0001; chi(2) test). CONCLUSIONS: These data showed that CYP2D6 poor metabolizers had a 5-fold higher risk for development of adverse effects during metoprolol treatment than patients who were not poor metabolizers. Because the absolute risk of adverse effects of metoprolol is unknown, the clinical relevance of the CYP2D6 genotype for metoprolol therapy has to be determined in a prospective manner.  相似文献   
9.
10.
Population-based studies that assess long-term patterns of incidence, major aspects of treatment and survival are virtually lacking for Hodgkin lymphoma (HL) at a younger age. This study assessed the progress made for young patients with HL (<25 years at diagnosis) in the Netherlands during 1990–2015. Patient and tumour characteristics were extracted from the population-based Netherlands Cancer Registry. Time trends in incidence and mortality rates were evaluated with average annual percentage change (AAPC) analyses. Stage at diagnosis, initial treatments and site of treatment were studied in relation to observed overall survival (OS). A total of 2619 patients with HL were diagnosed between 1990 and 2015. Incidence rates increased for 18–24-year-old patients (AAPC + 1%, P = 0·01) only. Treatment regimens changed into less radiotherapy and more ‘chemotherapy only’, different for age group and stage. Patients aged 15–17 years were increasingly treated at a paediatric oncology centre. The 5-year OS for children was already high in the early 1990s (93%). For patients aged 15–17 and 18–24 years the 5-year OS improved from 84% and 90% in 1990–1994 to 96% and 97% in 2010–2015, respectively. Survival for patients aged 15–17 years was not affected by site of treatment. Our present data demonstrate that significant progress in HL treatment has been made in the Netherlands since 1990.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号