首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1929篇
  免费   124篇
  国内免费   14篇
耳鼻咽喉   9篇
儿科学   67篇
妇产科学   56篇
基础医学   245篇
口腔科学   41篇
临床医学   152篇
内科学   393篇
皮肤病学   30篇
神经病学   120篇
特种医学   63篇
外科学   344篇
综合类   40篇
预防医学   140篇
眼科学   68篇
药学   166篇
中国医学   3篇
肿瘤学   130篇
  2023年   11篇
  2022年   13篇
  2021年   60篇
  2020年   37篇
  2019年   60篇
  2018年   65篇
  2017年   43篇
  2016年   71篇
  2015年   42篇
  2014年   76篇
  2013年   98篇
  2012年   136篇
  2011年   145篇
  2010年   102篇
  2009年   95篇
  2008年   108篇
  2007年   105篇
  2006年   90篇
  2005年   82篇
  2004年   81篇
  2003年   70篇
  2002年   67篇
  2001年   26篇
  2000年   18篇
  1999年   12篇
  1998年   13篇
  1997年   9篇
  1996年   12篇
  1995年   15篇
  1994年   11篇
  1993年   12篇
  1992年   10篇
  1991年   14篇
  1990年   17篇
  1989年   19篇
  1988年   15篇
  1987年   16篇
  1986年   14篇
  1985年   15篇
  1983年   15篇
  1981年   9篇
  1980年   12篇
  1979年   15篇
  1978年   13篇
  1974年   11篇
  1973年   12篇
  1972年   10篇
  1971年   7篇
  1970年   9篇
  1966年   7篇
排序方式: 共有2067条查询结果,搜索用时 38 毫秒
1.
2.
3.
Meloxicam (Mel) is a non-steroidal potent anti-inflammatory drug with effective analgesic effect for various situations; e.g. postoperative pain. The early systemic exposure to Mel and hence the rapid onset of pharmacological action is limited by its poor water solubility; a situation which may be more pronounced during acute pain episode because of reduced gastric motility that affects disintegration and dissolution of solid dosage forms. To overcome delayed absorption of Mel, improvement in the dissolution behavior of Mel is essential. Firstly, Mel spherical crystalline agglomerates (SCA) were prepared. Secondly, selected Mel SCA were integrated into intraoral fast disintegrating (OF) and edible (EF) films, they possess larger surface area that leads to rapid disintegration and release of the drug into the oral cavity within seconds and hence a rapid onset of action could be achieved. Stability study of formulations resulting in faster and higher extent of dissolution and suitable mechanical properties (G3 and G12) revealed their physical and chemical stability after three months of storage under different conditions. Both G3 and G12 successfully offered rapid absorption rate and accordingly an earlier systemic exposure to Mel compared to Mobic tablets as revealed by significantly earlier T max and higher AUC0–0.5h and AUC0–4h. T max following G3 fast disintegrating film administration was comparable to that reported following Mel parenteral administration but avoiding patient inconvenience. Both films may be suitable alternative to conventional oral and intramuscular Mel especially when earlier onset of action is required (in acute conditions).  相似文献   
4.
5.

Purpose

The aim of this research work was to explore the possibility of providing multifunctional oral insulin delivery system by conjugating several types of dipeptides on chitosan and trimethyl chitosan to be used as drug carriers.

Method

Conjugates of Glycyl-glycine and alanyl-alanine of chitosan and trimethyl chitosan (on primary alcohol group of polymer located on carbon 6) were synthesized and nanoparticles containing insulin were prepared for oral delivery. Preparation conditions of nanoparticles were optimized and their performance to enhance the permeability of insulin as well as cytotoxicity of nanoparticles in Caco-2 cell line was evaluated. To evaluate the efficacy of orally administered nanoparticles, nanoparticles with the most permeability enhancing ability were studied in male Wistar rats as animal model by measuring insulin and glucose Serum levels.

Result

Structural study of all the conjugates by infrared spectroscopy and nuclear magnetic resonance confirmed the successful formation of the conjugates with the desirable substitution degree. By optimizing preparation conditions, nanoparticles with expected size (157.3–197.7?nm), Zeta potential (24.35–34.37?mV), polydispersity index (0.365–0.512), entrapment efficiency (70.60–86.52%) and loading capacity (30.92–56.81%), proper morphology and desirable release pattern were obtained. Glycyl-glycine and alanyl-alanine conjugate nanoparticles of trimethyl chitosan showed 2.5–3.3 folds more effective insulin permeability in Caco-2 cell line than their chitosan counterparts. In animal model, oral administration of glycyl-glycine and alanyl-alanine conjugate nanoparticles of trimethyl chitosan demonstrated reasonable increase in Serum insulin level with relative bioavailability of 17.19% and 15.46% for glycyl-glycine and alanyl-alanine conjugate nanoparticles, respectively, and reduction in Serum glucose level compared with trimethyl chitosan nanoparticles (p?<?0.05).

Conclusion

It seems that glycyl-glycine and alanyl-alanine conjugate nanoparticles of trimethyl chitosan have met the aim of this research work and have been able to orally deliver insulin with more than one mechanism in animal model. Hence, they are promising candidates for further research studies.  相似文献   
6.
Despite the extensive literature regarding peripheral nerve stretch injuries, there are few studies that compare the nerve histology with the mechanical properties in humans. There is clinical evidence suggesting that the peroneal nerve is at greater risk for injury compared to the tibial nerve following total hip arthroplasty and hip trauma. We examined the two nerves from fresh human cadavers with or without controlled stretch. The mechanical properties, stiffness, and strain were compared with light microscopic preparations in longitudinal sections stained by the trichrome method for collagen and showing the effects of structural deformation. The tibial nerve had an average failure load 1.7× that for the peroneal nerve (P = 0.0001). Although the corresponding average stiffness showed a trend toward being larger (4.39 vs. 3.81 N/mm), the difference was not significant (P = 0.126). Histologically, the perineurium along with the underlying nerve fascicle was undulated in the control specimens and straightened out in the stretched specimens. Peroneal nerves went on to failure at lower loads and exhibited a wavy pattern on pathologic slides after failure, which shows that peroneal nerves fail mechanically before they can unfold. The tibial nerve has a biomechanical and histological advantage compared to the peroneal nerve during tensile testing, which could be the reason why it is less commonly damaged. We conclude that the perineurium is especially protective against deformation changes in human nerves relative to the respective nerve size and number of fascicles. Anat Rec, 302:2030–2039, 2019. © 2019 American Association for Anatomy  相似文献   
7.

Objective

The purpose of this study was to characterize the effects of either acidic or combined alkaline/heat treatments on the surface of grit-blasted commercially pure (cp) titanium. The effects of the previous treatments on the shear bond strength (SBS) of cp titanium to conventional glass ionomer, resin-reinforced glass ionomer and self-adhesive resin luting cements were evaluated.

Methods

Titanium discs were machined and received one of the following treatments; grit-blasting (GB), grit-blasting followed either by etching in HNO3/HF solution (GB/Ac) or by combined 5 M NaOH treatment/heat treatment at 600 °C for 1 h, then immersed for 24 h in SBF solution before cementation (GB/Ak). The treated surfaces were characterized by atomic force microscope (AFM), scanning electron microscope (SEM) and laser-induced brake-down spectroscopy (LIBS). Discs were cemented either by Fuji I, Fuji Plus or Rely X™ Unicem luting cements. The SBS was evaluated and the debonded discs were investigated by SEM.

Results

Two prominent results were revealed; first, GB/Ak treatment showed the highest SBS than the other treatments (P < 0.0001). Second, Rely X™ Unicem showed the highest SBS than the other cements (P < 0.0001). Fuji I and Fuji Plus showed predominant cohesive type of failure, whereas Rely X™ showed predominant adhesive type of failure.

Significance

Combined alkaline/heat treatments of commercially pure titanium surface shows to be of beneficial effect in enhancing SBS to glass ionomer, resin-modified glass ionomer and adhesive resin luting cements.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号