首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   7篇
妇产科学   2篇
基础医学   26篇
临床医学   5篇
内科学   26篇
皮肤病学   1篇
神经病学   11篇
外科学   4篇
预防医学   13篇
眼科学   2篇
药学   5篇
肿瘤学   4篇
  2023年   4篇
  2022年   1篇
  2021年   12篇
  2020年   3篇
  2019年   4篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   5篇
  2012年   7篇
  2011年   8篇
  2010年   4篇
  2009年   1篇
  2008年   2篇
  2007年   7篇
  2006年   4篇
  2005年   3篇
  2004年   7篇
  2003年   1篇
  2002年   5篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
排序方式: 共有99条查询结果,搜索用时 109 毫秒
1.
2.

Lessons Learned

  • Melatonin did not increase the efficacy of systemic chemotherapy in melanoma.
  • Metformin did not increase the efficacy of systemic chemotherapy in melanoma.
  相似文献   
3.
Structural dynamics of calcified cartilage (CC) are poorly understood. Conventionally, CC structure is analyzed using histological sections. Micro-computed tomography (µCT) allows for three-dimensional (3D) imaging of mineralized tissues; however, the segmentation between bone and mineralized cartilage is challenging. Here, we present state-of-the-art deep learning segmentation for µCT images to assess 3D CC morphology. The sample includes 16 knees from 12 New Zealand White rabbits dissected into osteochondral samples from six anatomical regions: lateral and medial femoral condyles, lateral and medial tibial plateaus, femoral groove, and patella (n = 96). The samples were imaged with µCT and processed for conventional histology. Manually segmented CC from the images was used to train segmentation models with different encoder–decoder architectures. The models with the greatest out-of-fold evaluation Dice score were selected. CC thickness was compared across 24 regions, co-registered between the imaging modalities using Pearson correlation and Bland–Altman analyses. Finally, the anatomical CC thickness variation was assessed via a Linear Mixed Model analysis. The best segmentation models yielded average Dice of 0.891 and 0.807 for histology and µCT segmentation, respectively. The correlation between the co-registered regions was strong (r = 0.897, bias = 21.9 µm, standard deviation = 21.5 µm). Finally, both methods could separate the CC thickness between the patella, femoral, and tibial regions (p < 0.001). As a conclusion, the proposed µCT analysis allows for ex vivo 3D assessment of CC morphology. We demonstrated the biomedical relevance of the method by quantifying CC thickness in different anatomical regions with a varying mean thickness. CC was thickest in the patella and thinnest in the tibial plateau. Our method is relatively straightforward to implement into standard µCT analysis pipelines, allowing the analysis of CC morphology. In future research, µCT imaging might be preferable to histology, especially when analyzing dynamic changes in cartilage mineralization. It could also provide further understanding of 3D morphological changes that may occur in mineralized cartilage, such as thickening of the subchondral plate in osteoarthritis and other joint diseases.  相似文献   
4.

Objective

We aimed to assess early neointimal healing by optical coherence tomography (OCT) 3 months after implantation of the ultrathin Orsiro® sirolimus‐eluting stent with biodegradable polymer.

Background

New generations of drug‐eluting stents with biodegradable polymer have been developed to avoid the continued vascular irritation of durable polymers.

Methods

In this prospective, open‐label study, 34 patients received an Orsiro® sirolimus‐eluting stent with biodegradable polymer. In a subgroup of patients (n = 15), the intervention was performed under OCT guidance. All patients underwent OCT‐examination at three months. The primary endpoint was 3‐month neointimal healing (NIH) score, calculated by weighing the presence of filling defects, malapposed and uncovered struts. Secondary endpoint was maturity of tissue coverage at 3 months.

Results

At 3 months, NIH score was 13.7 (5.4‐22), covered struts per lesion were 90% (84‐97%), malapposed struts were 2.7% (0.8‐5.4%) and rate of mature tissue coverage was 47% (42‐53%). No target lesion failure occurred up to 12 months. Patients with OCT‐guided stent implantation demonstrated a trend toward earlier stent healing as demonstrated by superior NIH scores (angio guided: 17.6% [8.8‐26.4]; OCT‐guided: 9.8% [4.0‐15.5]; mean difference ?8, [95%CI: ?18.7‐2.9], P = 0.123). This group had significantly more covered struts per lesion (angio‐guided: 86% [82‐90]; 95% [92‐99]; mean difference 9% [95%CI: 3‐15], P = 0.001).

Conclusion

The Orsiro® sirolimus‐eluting stent with biodegradable polymer shows early vascular healing with a high rate of strut coverage at 3‐month follow‐up. OCT guided stent implantation had a positive impact on early vascular healing.
  相似文献   
5.
In the present study we investigated the preparation of biofunctionalized surfaces using the direct electrochemical grafting of maleimidophenyl molecules with subsequent covalent immobilization of specific peptide to detect target antibody, thereby extending the application of the biosensing systems towards immunodiagnostics. Para-maleimidophenyl (p-MP) functional groups were electrochemically grafted on gold and silicon surfaces from solutions of the corresponding diazonium salt. A specially synthesized peptide modified with cysteine (Cys-peptide) was then immobilized on the p-MP grafted substrates by cross-linking between the maleimide groups and the sulfhydryl group of the cysteine residues. Accordingly, the Cys-peptide worked as an antigen that was able to bind specifically the target antibody (anti-GST antibody), while it was non-sensitive to a negative contrast antibody (i.e. anti-Flag β). The immobilization of both specific and non-specific antibodies on the Cys-peptide-modified surfaces was monitored by infrared spectroscopic ellipsometry, a quartz crystal microbalance integrated in flow injection analysis system and potentiometric response. The results obtained clearly demonstrated that the direct modification of a surface with maleimidophenyl provides a very simple and reliable way of preparing biofunctionalized surfaces suitable for the construction of immunological biosensors.  相似文献   
6.
Bioinspired artificial water channels aim to combine the high permeability and selectivity of biological aquaporin (AQP) water channels with chemical stability. Here, we carefully characterized a class of artificial water channels, peptide-appended pillar[5]arenes (PAPs). The average single-channel osmotic water permeability for PAPs is 1.0(±0.3) × 10−14 cm3/s or 3.5(±1.0) × 108 water molecules per s, which is in the range of AQPs (3.4∼40.3 × 108 water molecules per s) and their current synthetic analogs, carbon nanotubes (CNTs, 9.0 × 108 water molecules per s). This permeability is an order of magnitude higher than first-generation artificial water channels (20 to ∼107 water molecules per s). Furthermore, within lipid bilayers, PAP channels can self-assemble into 2D arrays. Relevant to permeable membrane design, the pore density of PAP channel arrays (∼2.6 × 105 pores per μm2) is two orders of magnitude higher than that of CNT membranes (0.1∼2.5 × 103 pores per μm2). PAP channels thus combine the advantages of biological channels and CNTs and improve upon them through their relatively simple synthesis, chemical stability, and propensity to form arrays.The discovery of the high water and gas permeability of aquaporins (AQPs) and the development of artificial analogs, carbon nanotubes (CNTs), have led to an explosion in studies aimed at incorporating such channels into materials and devices for applications that use their unique transport properties (19). Areas of application include liquid and gas separations (1013), drug delivery and screening (14), DNA recognition (15), and sensors (16). CNTs are promising channels because they conduct water and gas three to four orders of magnitude faster than predicted by conventional Hagen–Poiseuille flow theory (11). However, their use in large-scale applications has been hampered by difficulties in producing CNTs with subnanometer pore diameters and fabricating membranes in which the CNTs are vertically aligned (4). AQPs also efficiently conduct water across membranes (∼3 billion molecules per second) (17) and are therefore being studied intensively for their use in biomimetic membranes for water purification and other applications (1, 2, 18). The large-scale applications of AQPs is complicated by the high cost of membrane protein production, their low stability, and challenges in membrane fabrication (1).Artificial water channels, bioinspired analogs of AQPs created using synthetic chemistry (19), ideally have a structure that forms a water-permeable channel in the center and an outer surface that is compatible with a lipid membrane environment (1). Interest in artificial water channels has grown in recent years, following decades of research and focus on synthetic ion channels (19). However, two fundamental questions remain: (i) Can artificial channels approach the permeability and selectivity of AQP water channels? (ii) How can such artificial channels be packaged into materials with morphologies suitable for engineering applications?Because of the challenges in accurately replicating the functional elements of channel proteins, the water permeability and selectivity of first-generation artificial water channels were far below those of AQPs (SI Appendix, Table S1) (2025). In some cases, the conduction rate for water was much lower than that of AQPs as a result of excess hydrogen bonds being formed between the water molecules and oxygen atoms lining the channel (20). The low water permeability that was measured for first-generation water channels also highlights the experimental challenge of accurately characterizing water flow through low-permeability water channels. Traditionally, a liposome-based technique has been used to measure water conduction, in which the response to an osmotic gradient is followed by measuring changes in light scattering (26, 27) or fluorescence (28). The measured rates are then converted to permeability values. These measurements suffer from a high background signal due to water diffusion through the lipid bilayer, which, in some cases, can be higher than water conduction through the inserted channels, making it challenging to resolve the permeability contributed by the channels (29). Thus, there is a critical need for a method to accurately measure single-channel permeability of artificial water channels to allow for accurate comparison with those of biological water channels. Furthermore, first-generation artificial water channels were designed with a focus on demonstrating water conduction and one-dimensional assembly into tubular structures (2024), but how the channels could be assembled into materials suitable for use in engineering applications was not explored. To derive the most advantage from their fast and selective transport properties, artificial water channels are ideally vertically aligned and densely packed in a flat membrane. These features have been long desired but remain a challenge for CNT-based systems (4).Here we introduce peptide-appended pillar[5]arene (PAP; Fig. 1) (30) as an excellent architecture for artificial water channels, and we present data for their single-channel permeability and self-assembly properties. Nonpeptide pillar[5]arene derivatives were among first-generation artificial water channels (1, 23). Pillar[5]arene derivatives, including the one used in this study, have a pore of ∼5 Å in diameter and are excellent templates for functionalization into tubular structures (3134). However, the permeability of hydrazide-appended pillar[5]arene channels was low (∼6 orders of magnitude lower than that of AQPs; SI Appendix, Table S1). We addressed the challenges of accurately measuring single-channel water permeability and improving the water conduction rate over first-generation artificial water channels by using both experimental and simulation approaches. The presented PAP channel contains more hydrophobic regions (30) compared with its predecessor channel (23), which improves both its water permeability and its ability to insert into membranes. To determine single-channel permeability of PAPs, we combined stopped-flow light-scattering measurements of lipid vesicles containing PAPs with fluorescence correlation spectroscopy (FCS) (35, 36). Stopped-flow experiments allow the kinetics of vesicle swelling or shrinking to be followed with millisecond resolution and water permeability to be calculated, whereas FCS makes it possible to count the number of channels per vesicle (36, 37). The combination of the two techniques allows molecular characterization of channel properties with high resolution and demonstrates that PAP channels have a water permeability close to those of AQPs and CNTs. The experimental results were corroborated by molecular dynamics (MD) simulations, which also provided additional insights into orientation and aggregation of the channels in lipid membranes. Finally, as a first step toward engineering applications such as liquid and gas separations, we were able to assemble PAP channels into highly packed planar membranes, and we experimentally confirmed that the channels form 2D arrays in these membranes.Open in a separate windowFig. 1.Structure of the peptide-appended pillar[5]arene (PAP) channel. (A) The PAP channel (C325H320N30O60) forms a pentameric tubular structure through intramolecular hydrogen bonding between adjacent alternating d-l-d phenylalanine chains (d-Phe-l-Phe-d-Phe-COOH). (B) Molecular modeling (Gaussian09, semiempirical, PM6) of the PAP channel shows that the benzyl rings of the phenylalanine side chains extend outward from the channel walls (C, purple; H, white; O, red; N, blue). (C and D) MD simulation of the PAP channel in a POPC bilayer revealed its interactions with the surrounding lipids. The five chain-like units of the channel are colored purple, blue, ochre, green, and violet, with hydrogen atoms omitted. In C, the POPC lipids are represented by thin tan lines; in D, water is shown as red (oxygen) and white (hydrogen) van der Waals spheres.  相似文献   
7.
Raw materials are used in many industrial technologies. The raw material frequently has to be prepared as an intermediate with an appropriate particle size distribution, which requires the use of grinding. In grinding processes, energy consumption is a very important profitability criterion for the applied particular size reduction technology. The paper describes the comminution process that takes place in the jet mill using a modified form of the thermodynamic theory of grinding. In this theory, new material characteristics have been added: the surface and volumetric density of grinding energy. The thermodynamic theory is a combination of the classical Kick’s theory and the modified form of Rittinger’s theory. The tested physical magnitudes are a measure of the energy consumption of the grinding process. They describe the energy that must be provided in the grinding process to overcome interactions between particles related to the volume and surface of the material. Knowledge of these magnitudes is necessary to model thermomechanical phenomena in the solid state. The paper presents the results of research on comminution in a jet mill, on the basis of which the values of the tested material magnitudes were determined. It is graphically shown how the values of the tested magnitudes depend on the grain size of the ground samples.  相似文献   
8.
9.
Chicken acidic leucine‐rich EGF‐like domain‐containing brain protein (CALEB), also known as chondroitin sulfate proteoglycan (CSPG)5 or neuroglycan C, is a neural chondroitin sulfate‐containing and epidermal growth factor (EGF)‐domain‐containing transmembrane protein that is implicated in synaptic maturation. Here, we studied the role of CALEB within the developing cerebellum. Adult CALEB‐deficient mice displayed impaired motor coordination in Rota‐Rod experiments. Analysis of the neuronal connectivity of Purkinje cells by patch‐clamp recordings demonstrated impairments of presynaptic maturation of inhibitory synapses. GABAergic synapses on Purkinje cells revealed decreased evoked amplitudes, altered paired‐pulse facilitation and reduced depression after repetitive stimulation at early postnatal but not at mature stages. Furthermore, the elimination of supernumerary climbing fiber synapses on Purkinje cells was found to occur at earlier developmental stages in the absence of CALEB. For example, at postnatal day 8 in wild‐type mice, 54% of Purkinje cells had three or more climbing fiber synapses in contrast to mutants where this number was decreased to less than 25%. The basic properties of the climbing fiber Purkinje cell synapse remained unaffected. Using Sholl analysis of dye‐injected Purkinje cells we revealed that the branching pattern of the dendritic tree of Purkinje cells was not impaired in CALEB‐deficient mice. The alterations observed by patch‐clamp recordings correlated with a specific pattern and timing of expression of CALEB in Purkinje cells, i.e. it is dynamically regulated during development from a high chondroitin sulfate‐containing form to a non‐chondroitin sulfate‐containing form. Thus, our results demonstrated an involvement of CALEB in the presynaptic differentiation of cerebellar GABAergic synapses and revealed a new role for CALEB in synapse elimination in Purkinje cells.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号