首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   699篇
  免费   57篇
  国内免费   1篇
耳鼻咽喉   6篇
儿科学   30篇
妇产科学   20篇
基础医学   83篇
口腔科学   3篇
临床医学   54篇
内科学   156篇
皮肤病学   8篇
神经病学   69篇
特种医学   14篇
外科学   110篇
综合类   5篇
预防医学   45篇
眼科学   23篇
药学   75篇
肿瘤学   56篇
  2023年   5篇
  2022年   6篇
  2021年   22篇
  2020年   14篇
  2019年   17篇
  2018年   14篇
  2017年   8篇
  2016年   9篇
  2015年   8篇
  2014年   23篇
  2013年   27篇
  2012年   43篇
  2011年   44篇
  2010年   21篇
  2009年   31篇
  2008年   37篇
  2007年   45篇
  2006年   40篇
  2005年   42篇
  2004年   32篇
  2003年   20篇
  2002年   18篇
  2001年   17篇
  2000年   11篇
  1999年   10篇
  1998年   5篇
  1997年   5篇
  1992年   14篇
  1991年   20篇
  1990年   17篇
  1989年   10篇
  1988年   9篇
  1987年   10篇
  1986年   9篇
  1984年   3篇
  1983年   8篇
  1982年   5篇
  1979年   6篇
  1978年   5篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1973年   6篇
  1972年   10篇
  1971年   6篇
  1970年   4篇
  1966年   2篇
  1965年   2篇
  1937年   2篇
排序方式: 共有757条查询结果,搜索用时 171 毫秒
1.
2.
3.
4.
5.
6.
Signaling receptors on the cell surface are mobile and have evolved to efficiently sense and process mechanical or chemical information. We pose the problem of identifying the optimal strategy for placing a collection of distributed and mobile sensors to faithfully estimate a signal that varies in space and time. The optimal strategy has to balance two opposing objectives: the need to locally assemble sensors to reduce estimation noise and the need to spread them to reduce spatial error. This results in a phase transition in the space of strategies as a function of sensor density and efficiency. We show that these optimal strategies have been arrived at multiple times in diverse cell biology contexts, including the stationary lattice architecture of receptors on the bacterial cell surface and the active clustering of cell-surface signaling receptors in metazoan cells.The molecular characteristics of signaling receptors and their spatiotemporal organization have evolved to optimize different facets of information processing at the cell surface. A canonical information-processing problem involves designing strategies for a collection of distributed, noisy, mobile sensors to faithfully estimate a signal or function that varies in space and time (1). This problem appears naturally in many contexts, biological and nonbiological: (i) chemoattractant protein sensors on the bacteria cell surface (2, 3); (ii) galectin-glycoprotein assemblies designed for effective immune response on the surface of metazoan cells (4, 5); (iii) ligand-activated signaling protein receptors on the surface of eukaryotic cells (610); (iv) coclustering of integrin receptors to faithfully read and discriminate the rigidity and chemistry of a substrate (11); (v) clustering of e-cadherin receptors for effective adherence at cell–cell junctions (12); and even (vi) radio frequency (RF) sensor networks monitoring the environment or mobile targets (13). In the signal-processing community, this problem is known as data fusion or more generally information fusion (14, 15); however typical applications do not consider mobile sensors.In this paper we show how biology has, on multiple occasions, arrived at a solution to this optimization problem. The optimal solution needs to balance two opposing objectives, the need to locally assemble sensors to reduce estimation noise and the need to spread them out for broader spatial coverage. We show that in the space of strategies, this leads to a phase transition as a function of sensor density, sensor characteristics, and function properties. At very low sensor density, the optimal design corresponds to freely diffusing sensors. For sensor density above a threshold, there are two different optimal solutions as a function of a dimensionless parameter constructed from the sensor advection velocity and the correlation length and time of the incident signal. One optimal solution is that the sensors are static and located on a regular lattice grid. This is the strategy used in bacteria, such as Escherichia coli, to organize their chemoattractant receptors in a regular lattice array (3, 16), and in metazoan cells, where galectin-glycoproteins are organized in a lattice on the cell surface to effect an optimal immune response (4, 5). To realize this strategy, the cell needs to provide a rigid cortical scaffold that holds the receptors in place. Another optimal solution is to make the receptors mobile in such a way that a fraction of them form multiparticle nanoclusters, which then break up and reform randomly, the rest being uniformly distributed. Recent studies on the steady-state distribution of several cell-surface proteins reveal a stereotypical distribution of a fixed fraction of monomers and dynamic nanoclusters (69), and our information theoretic perspective could provide a general explanation for this. To realize this dynamic strategy, the cell surface needed to be relieved of the constraints imposed by the rigid scaffold and to be more regulatable. This strategy change needed the innovation of motor proteins and dynamic actin filaments, a regulated actomyosin machinery fueled by ATP, and a coupling of components of the cell surface to this cortical dynamic actin (17).  相似文献   
7.

Purpose

Conjoined twins are a rare complication of 9 monozygotic twins and are associated with high perinatal mortality. Pygopagus are one of the rare types of conjoined twins with only a handful of cases reported in the literature.

Case summary

We present the case of one-and-half month-old male pygopagus conjoined twins, who were joined together dorsally in lower lumbar and sacral region and had spina bifida and shared a single thecal sac with combined weight of 6.14 kg. Spinal cord was separated at the level of the conus followed by duraplasty. They had uneventful recovery with normal 15 months follow-up.

Conclusion

Separation of conjoined twins is recommended in where this is feasible with the anticipated survival of both or one infant.
  相似文献   
8.
5-Hydroxytryptamine (serotonin) (5-HT) and norepinephrine (NE) are implicated in modulating descending inhibitory pain pathways in the central nervous system. Duloxetine is a selective and potent dual 5-HT and NE reuptake inhibitor (SNRI). The ability of duloxetine to antagonize 5-HT depletion in para-chloramphetamine-treated rats was comparable with that of paroxetine, a selective serotonin reuptake inhibitor (SSRI), whereas its ability to antagonize NE depletion in alpha-methyl-m-tyrosine-treated rats was similar to norepinephrine reuptake inhibitors (NRIs), thionisoxetine or desipramine. In this paradigm, duloxetine was also more potent than other SNRIs, including venlafaxine or milnacipran and amitriptyline. Low doses of the SSRI paroxetine or the NRI thionisoxetine alone did not have an effect on late phase paw-licking pain behavior in the formalin model of persistent pain; however, when combined, significantly attenuated this pain behavior. Duloxetine (3-15 mg/kg intraperitoneal) significantly attenuated late phase paw-licking behavior in a dose-dependent manner in the formalin model and was more potent than venlafaxine, milnacipran, and amitriptyline. These effects of duloxetine were evident at doses that did not cause neurologic deficits in the rotorod test. Duloxetine (5-30 mg/kg oral) was also more potent and efficacious than venlafaxine and milnacipran in reversing mechanical allodynia behavior in the L5/L6 spinal nerve ligation model of neuropathic pain. Duloxetine (3-30 mg/kg oral) was minimally efficacious in the tail-flick model of acute nociceptive pain. These data suggest that inhibition of both 5-HT and NE uptake may account for attenuation of persistent pain mechanisms. Thus, duloxetine may have utility in treatment of human persistent and neuropathic pain states.  相似文献   
9.
Thyrotropin-releasing hormone (TRH) and several TRH analogs were examined in the [3H]-3-Me-His2-TRH ([3H]MeTRH) receptor-binding assay in rat amygdala, striatal and cortical membranes. The benzodiazepine, chlordiazepoxide, as reported in the literature was found to displace [3H]MeTRH with an IC50 value of 3.6 X 10(-7) M in amygdala membranes. Midazolam was, however, identified as being 6-fold more active than chlordiazepoxide with an IC50 value of 6.3 X 10(-8) M. The effect of these benzodiazepines on [3H]MeTRH binding did not appear to be related to their anxiolytic activity because the novel pyrazoloquinoline nonsedating anxiolytic, CGS 9896 was without effect on [3H]MeTRH binding at concentrations up to 1 X 10(-5) M. Chlordiazepoxide had similar activity in cortical membranes whereas midazolam was some 5 times less active in this preparation than in amygdala. Both compounds were weak displacers of [3H]MeTRH binding in striatal membranes, being at least two orders of magnitude less potent than in amygdala. In contrast TRH and its analogs, RX 77368 and DN-1417, were approximately 2 to 8 times more active in striatum than amygdala membranes. TRH and DN-1417 were less active in cortical membranes whereas RX 77368 was some three times more active than in striatum and amygdala. In three test procedures indicative of TRH agonist activity; thyroid-stimulating hormone release, reversal of pentobarbital sleeping time in mice and elevation of cerebellar cyclic GMP levels, the benzodiazepines were found to be devoid of activity, whereas TRH and related compounds produced their expected responses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
10.
Affective disorders (AD, including bipolar disorder, BD, and major depressive disorder) are severe recurrent illnesses. Identifying neural markers of processes underlying AD development in at-risk youth can provide objective, “early-warning” signs that may predate onset or worsening of symptoms. Using data (n = 34) from the Bipolar Offspring Study, we examined relationships between neural response in regions supporting executive function, and those supporting self-monitoring, during an emotional n-back task (focusing on the 2-back face distractor versus the 0-back no-face control conditions) and future depressive and hypo/manic symptoms across two groups of youth at familial risk for AD: Offspring of parents with BD (n = 15, age = 14.15) and offspring of parents with non-BD psychopathology (n = 19, age = 13.62). Participants were scanned and assessed twice, approximately 4 years apart. Across groups, less deactivation in the mid-cingulate cortex during emotional regulation (Rate Ratio = 3.07(95% CI:1.09–8.66), χ2(1) = 4.48, p = 0.03) at Time-1, and increases in functional connectivity from Time-1 to 2 (Rate Ratio = 1.45(95% CI:1.15–1.84), χ2(1) = 8.69, p = 0.003) between regions that showed deactivation during emotional regulation and the right caudate, predicted higher depression severity at Time-2. Both effects were robust to sensitivity analyses controlling for clinical characteristics. Decreases in deactivation between Times 1 and 2 in the right putamen tail were associated with increases in hypo/mania at Time-2, but this effect was not robust to sensitivity analyses. Our findings reflect neural mechanisms of risk for worsening affective symptoms, particularly depression, in youth across a range of familial risk for affective disorders. They may serve as potential objective, early-warning signs of AD in youth.Subject terms: Predictive markers, Depression, Bipolar disorder  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号