首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
口腔科学   2篇
临床医学   2篇
内科学   12篇
神经病学   2篇
肿瘤学   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2008年   1篇
  2006年   1篇
  2004年   2篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
排序方式: 共有19条查询结果,搜索用时 18 毫秒
1.
BACKGROUND: Any innovative optical system that facilitates the early endoscopic detection of neoplastic change in the GI mucosa has the potential to greatly improve survival and quality of life for patients prone to have GI malignancies develop. The present article describes light-induced autofluorescence spectroscopy with violet-blue excitation light for in vivo diagnosis of cancerous tissue of the esophagus during routine endoscopy. METHODS: One hundred twenty-nine endogenous fluorescence spectra were obtained from normal mucosa and malignant lesions in 9 patients with squamous cell cancer and 4 with adenocarcinoma of the esophagus. Following spectrographic measurements, biopsy specimens were obtained for definitive classification of the spectra. A special light source capable of delivering either white or violet-blue light for excitation of tissue autofluorescence by means of an endoscope was used. Endogenous fluorescence spectra emitted by tissues were detected with a fiberoptic probe and analyzed with a spectrograph. RESULTS: Squamous cell cancer and adenocarcinoma of the esophagus exhibit specific changes in the emitted fluorescence spectra as compared with normal mucosa. Based on the results obtained in earlier studies, malignant and benign spectra were differentiated with the aid of a mathematical algorithm. By using this algorithm, a sensitivity of 97% and specificity of 95% were obtained for the diagnosis of esophageal carcinoma. CONCLUSIONS: Light-induced fluorescence spectroscopy is useful for the endoscopic detection of squamous cell cancer and adenocarcinoma of the esophagus. This spectroscopic study provides a basis for the design of a simplified autofluorescence imaging system for detection of esophageal neoplasms.  相似文献   
2.
BACKGROUND: The aim of this study was to evaluate light-induced autofluorescence spectroscopy for the in vivo diagnosis of gastric cancer. METHODS: A total of 344 endogenous fluorescence spectra were obtained from normal (164) and cancerous gastric mucosa (180) in 15 patients with pure adenocarcinoma and in 16 patients with gastric cancer containing signet-ring cells. A special light source capable of delivering either white or violet-blue light for the excitation of tissue autofluorescence via the endoscope was used. Endogenous fluorescence spectra emitted by the tissue were collected with a fiberoptic probe and analyzed with a spectrograph. RESULTS: Gastric adenocarcinoma exhibits specific changes in the emitted fluorescence spectra as compared with normal gastric mucosa. By algorithmic classification of the spectra, a sensitivity of 84%, specificity of 87%, a likelihood ratio for a positive test of 6.5 and for a negative test of 0.18 were obtained for the diagnosis of pure adenocarcinoma of the stomach. However, gastric cancer with signet-ring cells exhibits great variation in emitted autofluorescence spectra as compared with normal mucosa. The sensitivity for the diagnosis of all carcinomas containing signet-ring cells was 55%, specificity 85%, the likelihood ratio for a positive test was 3.7 and for a negative test, 0.53. The diagnostic value decreases with increasing numbers of signet-ring cells and tumor grade. CONCLUSIONS: Light-induced autofluorescence spectroscopy is a new and promising bio-optical technique for the endoscopic in vivo diagnosis of gastric adenocarcinoma. The poor diagnostic accuracy for signet-ring cell carcinoma may be explained by the diffuse and frequent submucosal growth of this tumor and the presence of collagen fibers.  相似文献   
3.
Clinical Oral Investigations - The aim of this study is to investigate the influence of the material and corresponding sintering protocol, layer thickness, and aging on the two-body wear (2BW) and...  相似文献   
4.
BACKGROUND: Dysplasia and early cancer of the upper gastrointestinal (GI) tract often are undetected at white-light endoscopy. We describe oral administration of 5-aminolevulinic acid for the in vivo photodynamic diagnosis of premalignant and malignant lesions during endoscopy. METHODS: Four patients with known gastric adenoma (n = 1), macroscopically undetected but histologically proven esophageal squamous cell cancer (n = 1), suspected early cancer of the esophagus (n = 1), and multiple duodenal adenomas (n = 1) were sensitized with 5-aminolevulinic acid administered orally (15 mg/kg body weight). Photodynamic diagnosis was conducted after a retention time of 6 to 7 hours with a special light source capable of delivering either white or violet-blue light. Red fluorescence was detected through the gastroscope with an image-intensifying camera. RESULTS: All malignant lesions exhibited red or bluish fluorescence during photodynamic diagnosis. Fluorescence-negative mucosal areas proved to be histologically benign. CONCLUSION: Fluorescence induced with 5-aminolevulinic acid might be useful for the endoscopic detection of dysplasia and early carcinoma in the upper GI tract. Further investigations are needed to evaluate the sensitivity and specificity of photodynamic diagnosis for different tumor entities.  相似文献   
5.
Fluorescence detection is one of a series of new optical biopsy techniques that have been adapted and evaluated for implementation in gastrointestinal endoscopy. Endogenous fluorescence enables the detection of metabolic and structural changes in human tissue and thus may offer information for the detection of early stage dysplastic and malignant lesions of the mucosa that remain invisible in white light endoscopy. Tissue fluorescence can be detected by point-spectroscopic sampling of the mucosa or by processing the fluorescence information to generate an endoscopic image. Different approaches have been evaluated in pilot studies, and the results in terms of high diagnostic sensitivity and specificity are encouraging. However, large multi-center trials are necessary to evaluate the accuracy and predictability of these new optical tools for the endoscopic diagnosis of early cancerous lesions in the gastrointestinal tract.  相似文献   
6.
OBJECTIVE: The aim of this study was to investigate autofluorescence spectroscopy using violet-blue excitation light for the in vivo diagnosis of GI cancer during routine endoscopy. METHODS: Fluorescence spectra were obtained from normal mucosa and cancerous lesions of the esophagus and stomach. The spectroscopic system used comprised a special light source capable of delivering either white or violet-blue light to induce autofluorescence of tissue via the endoscope. Endogenous fluorescence spectra emitted by the tissue were recorded with a fiberoptic probe and analyzed with a spectrographic detector system consisting of a polychromator with a photodiode array and an optical multichannel analyzer. The data of each spectrum were sampled within the range of 450-700 nm and stored in a personal computer. RESULTS: Esophageal squamous cell cancer, adenocarcinoma of the esophagus, and adenocarcinoma of the stomach show specific differences in the emitted fluorescence spectra compared with normal mucosa. CONCLUSIONS: Light-induced fluorescence spectroscopy might be a useful tool for the endoscopic in vivo detection of dysplasia and early carcinoma in the upper GI tract. Further trials are needed to test the validity of this new optical detection system.  相似文献   
7.
Most secretory cargo proteins in eukaryotes are synthesized in the endoplasmic reticulum and actively exported in membrane-bound vesicles that are formed by the cytosolic coat protein complex II (COPII). COPII proteins are assisted by a variety of cargo-specific adaptor proteins required for the concentration and export of secretory proteins from the endoplasmic reticulum (ER). Adaptor proteins are key regulators of cargo export, and defects in their function may result in disease phenotypes in mammals. Here we report the role of 14-3-3 proteins as a cytosolic adaptor in mediating SAC1 transport in COPII-coated vesicles. Sac1 is a phosphatidyl inositol-4 phosphate (PI4P) lipid phosphatase that undergoes serum dependent translocation between the endoplasmic reticulum and Golgi complex and controls cellular PI4P lipid levels. We developed a cell-free COPII vesicle budding reaction to examine SAC1 exit from the ER that requires COPII and at least one additional cytosolic factor, the 14-3-3 protein. Recombinant 14-3-3 protein stimulates the packaging of SAC1 into COPII vesicles and the sorting subunit of COPII, Sec24, interacts with 14-3-3. We identified a minimal sorting motif of SAC1 that is important for 14-3-3 binding and which controls SAC1 export from the ER. This LS motif is part of a 7-aa stretch, RLSNTSP, which is similar to the consensus 14-3-3 binding sequence. Homology models, based on the SAC1 structure from yeast, predict this region to be in the exposed exterior of the protein. Our data suggest a model in which the 14-3-3 protein mediates SAC1 traffic from the ER through direct interaction with a sorting signal and COPII.Most of the transmembrane secretory cargo proteins from the endoplasmic reticulum (ER) are selectively exported in cytosolic coat protein complex II (COPII) vesicles via direct interaction of their export motif with the COPII coat. The COPII coat core machinery consists of five cytosolic proteins: Sar1, Sec23, Sec24, Sec13, and Sec31 (secretory pathway proteins) (1). Sec24 is considered to be the primary subunit responsible for binding to membrane cargo proteins at the ER and concentrating them into the forming vesicle (2). Some of these cargo proteins require the assistance of cytosolic or membrane-spanning accessory adaptor proteins for their incorporation into COPII vesicles. Several adaptor proteins have been identified to assist the COPII machinery in yeast (35); however, fewer have been characterized in higher eukaryotes. In metazoans, ERGIC-53 mediates the export of blood clotting factors, Cathepsin Z and C and α-1 antitrypsin (6), and SCAP [sterol-regulatory elementary binding protein (SREBP) cleavage activating protein] mediates the regulated transport of SREBP protein from the ER to the Golgi in cells that are sterol-deficient (7). Most COPII adaptor proteins are membrane-embedded, but at least one example of a cytosolic accessory protein, 14-3-3, has been proposed to control the anterograde trafficking of many of cell surface receptor proteins, possibly at the level of the ER (8). 14-3-3s are small (30 kDa), acidic, and ubiquitously expressed eukaryotic proteins that are conserved from yeast to mammals and modulate various cellular processes by interacting with a variety of target proteins (9, 10). These include cell cycle regulation, signaling by MAP kinases, apoptosis, and transfer of signaling molecules between the nucleus and cytosol (1114). Yeast cell viability depends on the expression of at least one of the two 14-3-3 isoforms (Bmh1 and Bmh2) (15). There are seven different isoforms in mammals (β, γ, δ, ε, η, σ, θ), some of which show differential tissue localization (14). Because of their redundant roles in cellular processes, depleting cellular levels of 14-3-3 to study a particular process poses a challenge. It is thought that their role in trafficking is to interfere with the ER retention/retrieval motif of target membrane proteins, and thus promote the transport of these cargos to the cell surface (16). For some proteins (e.g., KCNK3 and MHC class II, GPR15) (1719), recruitment of 14-3-3 requires phosphorylation of a residue involved in 14-3-3 binding, whereas in other proteins (e.g., Kir6.2) 14-3-3 recognizes the correct assembly of multimeric proteins (20, 21).In this paper we examine the role of 14-3-3 proteins as an adaptor for COPII vesicular transport of SAC1 (suppressor of actin mutations 1-like protein). SAC1 is a phosphatidyl inositol-4 (PI4) lipid phosphatase that belongs to a family of enzymes with a CX5R(T/S) Sac catalytic domain, which is conserved from yeast to metazoans. Sac proteins control several cellular processes, including phosphoinositide homeostasis, membrane trafficking, and cytoskeleton organization. SAC1 is a 587-aa transmembrane protein with both N- and C-terminal domains exposed to the cytosol. Deletion of SAC1 in yeast and mammalian cells leads to changes in Golgi morphology and function and a SAC1 mouse knockout is embryonically lethal. Recently, SAC1 has been identified as Drosophila vesicle-associated protein binding partner and down-regulation of Drosophila vesicle-associated protein or SAC1 in Drosophila leads to the pathogenesis associated with amyotrophic lateral sclerosis (22).It has been reported previously that SAC1 is localized to the Golgi membranes only when cells are starved for nutrients or growth factors, but remains in the ER under normal growth conditions (23, 24). Given the role for PI(4)P in vesicle traffic from the trans Golgi network, starvation conditions that lodge SAC1 and thus deplete the local supply of PI(4)P in the Golgi may suppress anterograde traffic in cells that must cease net cell growth. The regulation of SAC1 traffic may be crucial to the control of cell growth and anterograde membrane traffic.The retrieval of mammalian SAC1 from the Golgi to the ER in the presence of growth factors or mitogens is controlled by COPI-mediated retrograde transport and requires the p38 MAPK pathway (23). Although the regulation of SAC1 retrieval from the Golgi has been reported, little is known about the control of SAC1 export from the ER under conditions of serum starvation. Recently, the N-terminal cytoplasmic domain of SAC1 was reported to contribute to Golgi localization in mammalian cells (25). We have established a cell-free reconstitution system that recapitulates the biogenesis and ER export of SAC1 and identified 14-3-3 proteins as an important factor in the packaging of SAC1 into COPII transport vesicles. Given the role of 14-3-3 proteins in various signaling pathways and the fact that SAC1 transport is affected by the p38 MAPK pathway, an understanding of the molecular role of 14-3-3 proteins in vesicular traffic could provide a mechanistic link between signaling and membrane assembly (23).  相似文献   
8.
9.
The aim of this study was to evaluate longitudinal changes in the diffusion characteristics of brain white matter (WM) in collegiate athletes at three time points: prior to the start of the football season (T1), after one season of football (T2), followed by six months of no-contact rest (T3). Fifteen male collegiate football players and 5 male non-athlete student controls underwent diffusion MR imaging and computerized cognitive testing at all three timepoints. Whole-brain tract-based spatial statistics (TBSS) were used to compare fractional anisotropy (FA), radial diffusivity (RD), axial diffusivity (AD), and trace between all timepoints. Average diffusion values were obtained from statistically significant clusters for each individual. No athlete suffered a concussion during the study period. After one season of play (T1 to T2), we observed a significant increase in trace in a cluster located in the brainstem and left temporal lobe, and a significant increase in FA in the left parietal lobe. After six months of no-contact rest (T2 to T3), there was a significant decrease in trace and FA in clusters that were partially overlapping or in close proximity with the initial clusters (T1 to T2), with no significant changes from T1 to T3. Repetitive head impacts (RHI) sustained during a single football season may result in alterations of the brain’s WM in collegiate football players. These changes appear to return to baseline after 6 months of no-contact rest, suggesting remission of WM alterations. Our preliminary results suggest that collegiate football players might benefit from periods without exposure to RHI.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号