首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   7篇
  国内免费   1篇
基础医学   6篇
临床医学   10篇
内科学   16篇
综合类   2篇
药学   20篇
肿瘤学   5篇
  2022年   1篇
  2021年   15篇
  2020年   5篇
  2019年   4篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   7篇
  2013年   10篇
  2012年   4篇
  2011年   6篇
  2010年   1篇
排序方式: 共有59条查询结果,搜索用时 500 毫秒
1.
Affinity peptide and protein‐ (APP) based radiotracers are an increasingly popular class of radiotracer in positron emission tomography (PET), which was once dominated by the use of small molecule radiotracers. Radiolabelled monoclonal antibodies (mAbs) are important examples of APPs, yet a preference for smaller APPs, which exhibit fast pharmacokinetics and permit rapid PET aided diagnosis, has become apparent. 18F exhibits favourable physical characteristics for APP radiolabelling and has been described as an ideal PET radionuclide. Notwithstanding, 18F radiolabelling of APP is challenging, and this is echoed in the literature where a number of diverse approaches have been adopted. This review seeks to assess and compare the approaches taken to 18F APP radiolabelling with the intention of highlighting trends within this expanding field. Generic themes have emerged in the literature, namely the use of mild radiolabelling conditions, a preference of site‐specific methodologies with an impetus for short, automated procedures which produce high‐yielding [18F]APPs.  相似文献   
2.
Acute respiratory distress syndrome (ARDS) is characterized by the severe inflammation and destruction of the lung air–blood barrier, leading to irreversible and substantial respiratory function damage. Patients with coronavirus disease 2019 (COVID-19) have been encountered with a high risk of ARDS, underscoring the urgency for exploiting effective therapy. However, proper medications for ARDS are still lacking due to poor pharmacokinetics, non-specific side effects, inability to surmount pulmonary barrier, and inadequate management of heterogeneity. The increased lung permeability in the pathological environment of ARDS may contribute to nanoparticle-mediated passive targeting delivery. Nanomedicine has demonstrated unique advantages in solving the dilemma of ARDS drug therapy, which can address the shortcomings and limitations of traditional anti-inflammatory or antioxidant drug treatment. Through passive, active, or physicochemical targeting, nanocarriers can interact with lung epithelium/endothelium and inflammatory cells to reverse abnormal changes and restore homeostasis of the pulmonary environment, thereby showing good therapeutic activity and reduced toxicity. This article reviews the latest applications of nanomedicine in pre-clinical ARDS therapy, highlights the strategies for targeted treatment of lung inflammation, presents the innovative drug delivery systems, and provides inspiration for strengthening the therapeutic effect of nanomedicine-based treatment.  相似文献   
3.
Vascular endothelial growth factor (VEGF) plays a crucial role in angiogenesis within solid cancers. Thus, targeting VEGF might be part of a feasible therapy for treating pathological neovascularization, and nanobodies ? derived from heavy chain‐only antibodies occurring within Camelidae ? are a novel class of nanometer‐sized antibodies possessing unique properties that could be developed into a promising therapeutic. However, nanobodies have a very short half‐life in vivo due to their small size. Development of a bivalent nanobody is one way to remediate the half‐life problem of nanobodies. Two identical anti‐VEGF nanobodies were connected using the hinge region of llama IgG2c. The recombinant plasmid (pHEN6c‐bivalent nanobody) was transformed into E.coli WK6 cells and expression of the bivalent nanobody construct was induced with 1mM Isopropyl β‐D‐1‐thiogalactopyranoside (IPTG). Recombinant bivalent nanobody was purified using nickel affinity chromatography and its activity on human endothelial cells was assessed using 3‐(4,5‐Dimethylthiazol‐2‐yr)‐2,5‐diphenyltetrazolium bromide (MTT), tube formation, and cell migration assays. The pharmacokinetic study was performed after intravenous (i.v.) injection of recombinant bivalent nanobody into six‐week‐old C57BL/6 mice. Recombinant bivalent nanobody performed significantly better than monovalent nanobody in inhibiting proliferation, tube formation, and migration of human endothelial cells. Pharmacokinetic results showed a 1.8‐fold longer half‐life of bivalent nanobody in comparison with the monovalent nanobody. These results underscore the potential of recombinant anti‐VEGF bivalent nanobody as a promising tool for development of a novel therapeutic with an extended plasma half‐life for VEGF‐related diseases.  相似文献   
4.
Nanobodies for the first time were identified in the sera of Camelidae. Single-domain antibodies or nanobodies are a class of next-generation antibodies that have specific features: small size (in nanoscale), high penetration in various tissues, high stability in hard situations and ease production process in microbial systems. In fact single-domain antibodies are the smallest fragment of the antibody with binding ability. Unique characteristics and features of nanobodies make them an appropriate candidate for further evaluation as the development of novel antibody-based therapeutics. In this regard single-domain antibodies are in the interest of many researchers as well as biopharmaceutical companies for diagnostic and therapeutic applications. Nowadays several single domain antibodies have been developed and evaluated in different clinical trials. Because of many advantages of single-domain antibodies over other formats of antibodies, they could be good replacement for other formats of antibodies in near future. Here, we review the biology, engineering platforms and application of nanobodies.  相似文献   
5.
目的筛选出抗人CD20纳米抗体序列,并获得具有高亲和力与特异性的抗CD20-人IgG Fc纳米抗体。方法利用天然噬菌体纳米抗体库,以生物素化的CD20抗原为靶标进行4轮液相亲和筛选,采用ELISA鉴定阳性克隆;将筛选到的阳性克隆基因序列与人IgG Fc片段偶联,构建到原核表达载体pCZN1中,并转化至大肠杆菌Arctic Express,经异丙基-β-D-硫代半乳糖苷(IPTG)低温诱导重组蛋白的表达,利用Ni柱进行亲和纯化;ELISA和Western blot法鉴定纯化产物。结果筛选得到了一条重复性高且亲水性好的CD20纳米抗体序列,纯化获得了纯度高达85%以上的抗CD20-人IgG Fc纳米抗体。ELISA结果显示其与CD20抗原具有较高亲和力, Western blot结果表明该抗体能特异性识别CD20抗原。结论利用天然噬菌体纳米抗体库成功获得了抗CD20纳米抗体序列,经纯化的抗CD20-人IgG Fc纳米抗体具有高亲和力与特异性。  相似文献   
6.
Immunosensing methods are biosensing techniques based on specific recognition of an antigen–antibody immunocomplex, which have become commonly used in safeguarding public health. Taking advantage of antibody-related biotechnological advances, the utilization of an antigen-binding fragment of a heavy-chain-only antibody termed as 'nanobody' holds significant biomedical potential. Compared with the conventional full-length antibody, a single-domain nanobody retaining cognate antigen specificity possesses remarkable physicochemical stability and structural adaptability, which enables a flexible and efficient molecular design of the immunosensing strategy. This minireview aims to summarize the recent progress in immunosensing methods using nanobody targeting tumor markers, environmental pollutants, and foodborne microbes.  相似文献   
7.
Infection with obligatory intracellular bacteria is difficult to treat, as intracellular targets and delivery methods of therapeutics are not well known. Ehrlichia translocated factor-1 (Etf-1), a type IV secretion system (T4SS) effector, is a primary virulence factor for an obligatory intracellular bacterium, Ehrlichia chaffeensis. In this study, we developed Etf-1–specific nanobodies (Nbs) by immunizing a llama to determine if intracellular Nbs block Etf-1 functions and Ehrlichia infection. Of 24 distinct anti–Etf-1 Nbs, NbD7 blocked mitochondrial localization of Etf-1–GFP in cotransfected cells. NbD7 and control Nb (NbD3) bound to different regions of Etf-1. Size-exclusion chromatography showed that the NbD7 and Etf-1 complex was more stable than the NbD3 and Etf-1 complex. Intracellular expression of NbD7 inhibited three activities of Etf-1 and E. chaffeensis: up-regulation of mitochondrial manganese superoxide dismutase, reduction of intracellular reactive oxygen species, and inhibition of cellular apoptosis. Consequently, intracellular NbD7 inhibited Ehrlichia infection, whereas NbD3 did not. To safely and effectively deliver Nbs into the host cell cytoplasm, NbD7 was conjugated to cyclized cell-permeable peptide 12 (CPP12-NbD7). CPP12-NbD7 effectively entered mammalian cells and abrogated the blockade of cellular apoptosis caused by E. chaffeensis and inhibited infection by E. chaffeensis in cell culture and in a severe combined-immunodeficiency mouse model. Our results demonstrate the development of an Nb that interferes with T4SS effector functions and intracellular pathogen infection, along with an intracellular delivery method for this Nb. This strategy should overcome current barriers to advance mechanistic research and develop therapies complementary or alternative to the current broad-spectrum antibiotic.

Human monocytic ehrlichiosis (HME), one of the most prevalent, life-threatening, and emerging tick-borne diseases in the United States (1, 2) is caused by infection with Ehrlichia chaffeensis, an obligatory intracellular bacterium in the order Rickettsiales. E. chaffeensis replicates within human monocytes-macrophages and causes severe flu-like symptoms accompanied by hematologic abnormalities and hepatitis. Currently, the only HME therapy is the broad-spectrum antibiotic doxycycline, which is effective only if initiated early because delayed initiation (e.g., because of misdiagnosis can lead to severe complications or death). In addition, doxycycline is contraindicated for pregnant women and children or those with drug allergies. The presence of underlying illness or injury, immunosuppression, and coinfection with other tick-borne pathogens can similarly lead to severe complications or death (3). No vaccine exists for HME. Tick-borne diseases have risen dramatically in the past 20 y and continue to rise, underscoring the importance of developing new therapeutic approaches and preventive measures (4).The type IV secretion system (T4SS) is conserved among all rickettsial organisms. The recent elucidation of critical roles of T4SS for E. chaffeensis and Anaplasma phagocytophilum infection (5) may provide potential targets for new approaches against rickettsial diseases. For example, the T4SS effectors Ehrlichial translocated factors 1 and 2 (Etf-1 and Etf-2) are critical E. chaffeensis proteins secreted via T4SS into the host cell cytoplasm, as knockdown of Etf-1 or Etf-2 by transfection of E. chaffeensis with specific antisense peptide nucleic acids significantly inhibits E. chaffeensis infection (6, 7). Secreted Etf-1 localizes to mitochondria and blocks mitochondria-mediated host cell apoptosis to keep the infected host cell alive for bacterial intracellular replication (8). A subpopulation of Etf-1 molecules that are not localized to mitochondria interacts with Beclin 1 (ATG6) and active Rab5 (Rab5-GTP), and induces Rab5-regulated autophagy for E. chaffeensis to acquire catabolites as nutrients (9). Etf-2 directly binds Rab5-GTP on Ehrlichia-containing inclusion membranes and blocks Rab5 GTPase activating protein (RabGAP-5) engagement with Rab5-GTP to prevent Ehrlichia-containing inclusions from maturing into late endosomes and fusing with lysosomes (7).Camelidae produce two types of antibodies: conventional antibodies and heavy-chain–only antibodies (10). The variable domain of the heavy chain of heavy-chain–only antibodies (VHHs) of camelids is the smallest (11 to 15 kDa) antigen-binding fragment relative to conventional antibodies. VHHs are soluble and display long surface loops, which are often larger than those of conventional murine and human antibodies (11, 12). The VHHs can be cloned into bacterial or mammalian expression plasmids (13) to produce a nanobody (Nb), a monomeric variable antibody. VHHs cloned into mammalian expression vectors can produce intracellular Nbs within mammalian cells that are superior to conventional antibodies for modulating intracellular functions because they can operate in the reducing intracellular environment, are proteolytically stable, can target subcellular sites, can penetrate cavities in target antigens, and can bind efficiently to antigens, such as enzyme catalytic sites (1316). Although the therapeutic potential of Nbs has been investigated for several infectious diseases (14, 1719), the use of Nbs as a therapeutic agent against intracellular bacteria such as E. chaffeensis has not been reported. In the present study, we developed an intracellular Nb approach to block T4SS effectors within mammalian cells, thereby inhibiting intracellular pathogen infection.Progress in developing effective therapy and investigative approach for obligatory intracellular pathogens has been hindered by many factors, not the least of which is the lack of safe and efficient intracellular delivery methods of macromolecules. Although cyclic peptides are generally unable to cross the cell membrane, some naturally occurring cyclic peptides (e.g., cyclosporine A) possess the unusual ability of crossing the cell membrane by passive diffusion and are orally bioavailable (20). Cyclized Arg-rich cell-permeable peptides (CPPs)—such as cyclo(FΦRRRRQ) or cFΦR4, where Φ is l-2-naphthylalanine—or newer and more effective CPPs, such as CPP9 and CPP12, that include d-arginine or d-phenylalanine, provide rapid and efficient cytosolic delivery of their linked cargo proteins into >95% of cells (2123). They are not cytotoxic at effective concentrations and have oral and intravenous bioavailability based on preliminary pharmacokinetics in mice (22). The cyclic CPPs (and the CPP-cargo conjugates) bind directly to plasma membrane phospholipids and enter cells by endocytosis (22). They then efficiently escape from the early endosome into the cytosol unlike Tat, which escapes only from late endosomes (2224).In the present study, we have developed anti–Etf-1 Nbs. We obtained a Nb that blocks Etf-1 functions and demonstrated its effectiveness in combination with a cyclic CPP for inhibition of E. chaffeensis infection in cell culture and in a mouse model. These findings represent a significant advance in developing therapeutic and investigative strategy of obligatory intracellular pathogens.  相似文献   
8.
Glucocorticoid (GC) hormone has been commonly used to treat systemic inflammation and immune disorders. However, the side effects associated with long-term use of high-dose GC hormone limit its clinical application seriously. GC hormone that can specifically target the lung might decrease the effective dosage and thus reduce GC-associated side effects. In this study, we successfully prepared human lung-targeting liposomal methylprednisolone crosslinked with nanobody (MPS-NSSLs-SPANb). Our findings indicate that MPS-NSSLs-SPANb may reduce the effective therapeutic dosage of MPS, achieve better efficacy, and reduce GC-associated side effects. In addition, MPS-NSSLs-SPANb showed higher efficacy and lower toxicity than conventional MPS.  相似文献   
9.
Introduction: Molecular imaging is a fast developing field and there is a growing need for specific imaging tracers in the clinic. Camelid single-domain antibody-fragments (sdAbs) recently emerged as a new class of molecular imaging tracers.

Areas covered: We review the importance of molecular imaging in the clinic and the use of camelid sdAbs as in vivo molecular imaging tracers. Interest in imaging tracers based on antibody fragments or man-made protein scaffolds expanded over the last years. Camelid sdAbs are small, monomeric binding fragments that are derived from unique heavy-chain-only antibodies. In vivo imaging studies with sdAbs targeting various cell membrane receptors in different disease models have been reported and more sdAb imaging tracers are under development. The first clinical trial with a camelid sdAb as a molecular imaging tracer targeting the breast cancer marker Human Epidermal growth factor Receptor 2 is currently ongoing.

Expert opinion: We expect that the development and use of sdAbs as tracers for both preclinical and clinical molecular imaging applications will become widespread.  相似文献   
10.
There is a need for safe and broadly effective anti-HCV agents that can cope with genetic multiplicity and mutations of the virus. In this study, humanized-camel VHHs to genotype 3a HCV serine protease were produced and were linked molecularly to a cell penetrating peptide, penetratin (PEN). Human hepatic (Huh7) cells transfected with the JFH-1 RNA of HCV genotype 2a and treated with the cell penetrable nanobodies (transbodies) had a marked reduction of the HCV RNA intracellularly and in their culture fluids, less HCV foci inside the cells and less amounts of HCV core antigen in culture supernatants compared with the infected cells cultured in the medium alone. The PEN-VHH-treated-transfected cells also had up-regulation of the genes coding for the host innate immune response (TRIF, TRAF3, IRF3, IL-28B and IFN-β), indicating that the cell penetrable nanobodies rescued the host innate immune response from the HCV mediated-suppression. Computerized intermolecular docking revealed that the VHHs bound to residues of the protease catalytic triad, oxyanion loop and/or the NS3 N-terminal portion important for non-covalent binding of the NS4A protease cofactor protein. The so-produced transbodies have high potential for testing further as a candidate for safe, broadly effective and virus mutation tolerable anti-HCV agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号