首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   620篇
  免费   76篇
  国内免费   27篇
耳鼻咽喉   1篇
儿科学   10篇
妇产科学   8篇
基础医学   129篇
口腔科学   10篇
临床医学   24篇
内科学   122篇
皮肤病学   8篇
神经病学   66篇
外科学   28篇
综合类   64篇
预防医学   18篇
眼科学   4篇
药学   112篇
中国医学   6篇
肿瘤学   113篇
  2023年   14篇
  2022年   13篇
  2021年   25篇
  2020年   24篇
  2019年   21篇
  2018年   19篇
  2017年   23篇
  2016年   30篇
  2015年   49篇
  2014年   52篇
  2013年   55篇
  2012年   44篇
  2011年   59篇
  2010年   43篇
  2009年   35篇
  2008年   39篇
  2007年   25篇
  2006年   19篇
  2005年   19篇
  2004年   16篇
  2003年   16篇
  2002年   8篇
  2001年   6篇
  2000年   4篇
  1999年   4篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   5篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1978年   4篇
  1977年   2篇
  1976年   5篇
  1975年   1篇
排序方式: 共有723条查询结果,搜索用时 15 毫秒
1.
Macrophages are the most abundant immune cells in the lung, which play an important role in COPD. The anti-inflammatory and anti-oxidation of ergosterol are well documented. However, the effect of ergosterol on macrophage polarization has not been studied. The objective of this work was to investigate the effect of ergosterol on macrophage polarization in CSE-induced RAW264.7 cells and Sprague-Dawley (SD) rats COPD model. Our results demonstrate that CSE-induced macrophages tend to the M1 polarization via increasing ROS, IL-6 and TNF-α, as well as increasing MMP-9 to destroy the lung construction in both RAW264.7 cells and SD rats. However, treatment of RAW264.7 cells and SD rats with ergosterol inhibited CSE-induced inflammatory by decreasing ROS, IL-6 and TNF-α, and increasing IL-10 and TGF-β, shuffling the dynamic polarization of macrophages from M1 to M2 both in vitro and in vivo. Ergosterol also decreased the expression of M1 marker CD40, while increased that of M2 marker CD163. Moreover, ergosterol improved the lung characters in rats by decreasing MMP-9. Furthermore, ergosterol elevated HDAC3 activation and suppressed P300/CBP and PCAF activation as well as acetyl NF-κB/p65 and IKKβ, demonstrating that HDAC3 deacetylation was involved in the effect of ergosterol on macrophage polarization. These results also provide a proof in immunoregulation of ergosterol for therapeutic effects of cultured C. sinensis on COPD patients.  相似文献   
2.
Acetylation is an important, reversible posttranslational modification to a protein. In a previous study, we found that there were a large number of acetylated sites in various nutrient storage proteins of the silkworm haemolymph. In this study, we confirmed that acetylation can affect the stability of nutrient storage protein Bombyx mori apolipophorin‐III (BmApoLp‐III). First, the expression of BmApoLp‐III could be upregulated when BmN cells were treated with the deacetylase inhibitor panobinostat (LBH589); similarly, the expression was downregulated when the cells were treated with the acetylase inhibitor C646. Furthermore, the increase in acetylation by LBH589 could inhibit the degradation and improve the accumulation of BmApoLp‐III in BmN cells treated with cycloheximide and MG132 respectively. Moreover, we found that an increase in acetylation could decrease the ubiquitination of BmApoLp‐III and vice versa; therefore, we predicted that acetylation could improve the stability of BmApoLp‐III by competing for ubiquitination and inhibiting the protein degradation pathway mediated by ubiquitin. Additionally, BmApoLp‐III had an antiapoptosis function that increased after LBH589 treatment, which might have been due to the improved protein stability after acetylation. These results have laid the foundation for further study on the mechanism of acetylation in regulating the storage and utilization of silkworm nutrition.  相似文献   
3.
The progress of modern medicine would be impossible without the use of general anesthetics (GAs). Despite advancements in refining anesthesia approaches, the effects of GAs are not fully reversible upon GA withdrawal. Neurocognitive deficiencies attributed to GA exposure may persist in neonates or endure for weeks to years in the elderly. Human studies on the mechanisms of the long-term adverse effects of GAs are needed to improve the safety of general anesthesia but they are hampered not only by ethical limitations specific to human research, but also by a lack of specific biological markers that can be used in human studies to safely and objectively study such effects. The latter can primarily be attributed to an insufficient understanding of the full range of the biological effects induced by GAs and the molecular mechanisms mediating such effects even in rodents, which are far more extensively studied than any other species. Our most recent experimental findings in rodents suggest that GAs may adversely affect many more people than is currently anticipated. Specifically, we have shown that anesthesia with the commonly used GA sevoflurane induces in exposed animals not only neuroendocrine abnormalities (somatic effects), but also epigenetic reprogramming of germ cells (germ cell effects). The latter may pass the neurobehavioral effects of parental sevoflurane exposure to the offspring, who may be affected even at levels of anesthesia that are not harmful to the exposed parents. The large number of patients who require general anesthesia, the even larger number of their future unexposed offspring whose health may be affected, and a growing number of neurodevelopmental disorders of unknown etiology underscore the translational importance of investigating the intergenerational effects of GAs. In this mini review, we discuss emerging experimental findings on neuroendocrine, epigenetic, and intergenerational effects of GAs.  相似文献   
4.
Melatonin induces apoptosis in many different cancer cell lines, including colorectal cancer. However, the precise mechanisms involved remain largely unresolved. In this study, we provide evidence to reveal a new mechanism by which melatonin induces apoptosis of colorectal cancer LoVo cells. Melatonin at pharmacological concentrations significantly suppressed cell proliferation and induced apoptosis in a dose‐dependent manner. The observed apoptosis was accompanied by the melatonin‐induced dephosphorylation and nuclear import of histone deacetylase 4 (HDAC4). Pretreatment with a HDAC4‐specific siRNA effectively attenuated the melatonin‐induced apoptosis, indicating that nuclear localization of HDAC4 is required for melatonin‐induced apoptosis. Moreover, constitutively active Ca2+/calmodulin‐dependent protein kinase II alpha (CaMKIIα) abrogated the melatonin‐induced HDAC4 nuclear import and apoptosis of LoVo cells. Furthermore, melatonin decreased H3 acetylation on bcl‐2 promoter, leading to a reduction of bcl‐2 expression, whereas constitutively active CaMKIIα(T286D) or HDAC4‐specific siRNA abrogated the effect of melatonin. In conclusion, the present study provides evidence that melatonin‐induced apoptosis in colorectal cancer LoVo cells largely depends on the nuclear import of HDAC4 and subsequent H3 deacetylation via the inactivation of CaMKIIα.  相似文献   
5.
Neuroplasticity has classically been understood to arise through changes in synaptic strength or synaptic connectivity. A newly discovered form of neuroplasticity, neurotransmitter switching, involves changes in neurotransmitter identity. Chronic exposure to different photoperiods alters the number of dopamine (tyrosine hydroxylase, TH+) and somatostatin (SST+) neurons in the paraventricular nucleus (PaVN) of the hypothalamus of adult rats and results in discrete behavioral changes. Here, we investigate whether photoperiod-induced neurotransmitter switching persists during aging and whether epigenetic mechanisms of histone acetylation and DNA methylation may contribute to this neurotransmitter plasticity. We show that this plasticity in rats is robust at 1 and at 3 months but reduced in TH+ neurons at 12 months and completely abolished in both TH+ and SST+ neurons by 18 months. De novo expression of DNMT3a catalyzing DNA methylation and anti-AcetylH3 assessing histone 3 acetylation were observed following short-day photoperiod exposure in both TH+ and SST+ neurons at 1 and 3 months while an overall increase in DNMT3a in SST+ neurons paralleled neuroplasticity reduction at 12 and 18 months. Histone acetylation increased in TH+ neurons and decreased in SST+ neurons following short-day exposure at 3 months while the total number of anti-AcetylH3+ PaVN neurons remained constant. Reciprocal histone acetylation in TH+ and SST+ neurons indicates the importance of studying epigenetic regulation at the circuit level for identified cell phenotypes. The findings may be useful for developing approaches for noninvasive treatment of disorders characterized by neurotransmitter dysfunction.  相似文献   
6.
In addition to disturbed apoptosis and insufficient clearance of apoptotic cells, there is recent evidence for a role of neutrophils in the aetiopathogenesis of systemic lupus erythematosus (SLE). In response to various stimuli, neutrophils can rapidly release DNA fibres decorated with citrullinated histones and anti-microbial peptides. These structures are referred to as neutrophil extracellular traps (NETs). In addition to apoptotic cell-derived microparticles, these NETs may comprise a further source of autoantigens, able to drive the autoimmune response in SLE. Our group recently identified specific histone modifications occurring during apoptosis that play an important role in the autoimmune response in SLE. In the current study, we evaluated the presence and immunostimulatory potential of these previously identified histone modifications in NETs. Compared to NETs from healthy donors, the histones present in NETs formed by SLE-derived neutrophils contain increased amounts of acetylated and methylated residues, which we previously observed to be associated with apoptosis and SLE. Treatment of neutrophils with histone deacetylase (HDAC) inhibitor Trichostatin A (TSA), prior to induction of NETosis, induced NETs containing hyperacetylated histones, endowed with an increased capacity to activate macrophages. This implies that specific histone modifications, in particular acetylation, might enhance the immunostimulatory potential of NETs in SLE.  相似文献   
7.
Genome modifications resulting from epigenetic changes appear to play a critical role in the development and/or progression of cancer. Scatter experimental evidence suggests that epigenetic changes could also be critical determinants of cellular senescence and organismal aging. Here we review the current evidence and discuss how imbalances in chromatin remodelers might trigger irreversible growth arrest in proliferating cells and tissues. Experimental data using drugs that target specific chromatin remodeling enzymes suggest that such approach could lead to the development of novel therapeutic modalities for the prevention or amelioration of some age-related dysfunctions.  相似文献   
8.
Epigenetic influences, such as DNA methylation, histone acetylation, and up‐regulation/down‐regulation of genes by microRNAs, change the genetic makeup of an individual without affecting DNA base‐pair sequences. Indeed, epigenetic changes play an integral role in the progression from normal esophageal mucosa to Barrett''s esophagus to esophageal adenocarcinoma via dysplasia–metaplasia–neoplasia sequence. Many genes involved in esophageal adenocarcinoma display hypermethylation, leading to their down‐regulation. The classes of these genes include cell cycle control, DNA and growth factor repair, tumor suppressors, antimetastasis, Wnt‐related genes, and proapoptotic genes. Histone acetylation in the pathophysiology of esophageal diseases has not been thoroughly investigated, and its critical role in the development of esophageal adenocarcinoma is less defined. Many microRNAs have been associated with the development of Barrett''s esophagus and esophageal adenocarcinoma. Here, we critically addressed the specific steps most closely influenced by microRNAs in the progression from Barrett''s esophagus to esophageal adenocarcinoma. However, microRNAs can target up to hundreds of genes, making it difficult to correlate directly with a given phenotype of the disease. Esophageal adenocarcinoma progressing from premalignant condition of Barrett''s esophagus carries an extremely poor prognosis. Risk stratification for patients based on their epigenetic profiles may be useful in providing more targeted and directed treatment to patients.  相似文献   
9.
针刺对心肌缺血各期心脏功能的保护作用已经被多个层面证实,但与组蛋白修饰关系的研究却并不深入。组蛋白修饰是表观遗传学的重要组成部分,也是当今分子生物学及基础医学的研究重点。本文从组蛋白修饰与心脏基因表达的关系入手,综合近年来组蛋白修饰研究进展,即由组蛋白修饰改变介导的基因表达水平变化直接影响了心肌缺血的损伤程度及预后.本探讨将表观遗传学调控引入针刺促进心肌保护机理研究,以期为针刺疗效的分子生物学机制研究提供新思路和方向。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号