首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4338篇
  免费   290篇
  国内免费   176篇
耳鼻咽喉   37篇
儿科学   66篇
妇产科学   62篇
基础医学   1139篇
口腔科学   77篇
临床医学   308篇
内科学   903篇
皮肤病学   83篇
神经病学   270篇
特种医学   47篇
外科学   314篇
综合类   563篇
预防医学   111篇
眼科学   33篇
药学   364篇
  1篇
中国医学   104篇
肿瘤学   322篇
  2023年   28篇
  2022年   50篇
  2021年   87篇
  2020年   85篇
  2019年   147篇
  2018年   145篇
  2017年   109篇
  2016年   99篇
  2015年   113篇
  2014年   323篇
  2013年   256篇
  2012年   235篇
  2011年   295篇
  2010年   294篇
  2009年   315篇
  2008年   331篇
  2007年   275篇
  2006年   227篇
  2005年   182篇
  2004年   151篇
  2003年   145篇
  2002年   106篇
  2001年   93篇
  2000年   77篇
  1999年   63篇
  1998年   45篇
  1997年   47篇
  1996年   49篇
  1995年   68篇
  1994年   33篇
  1993年   30篇
  1992年   16篇
  1991年   17篇
  1990年   7篇
  1989年   14篇
  1988年   10篇
  1987年   5篇
  1986年   7篇
  1985年   45篇
  1984年   25篇
  1983年   34篇
  1982年   27篇
  1981年   22篇
  1980年   18篇
  1979年   20篇
  1978年   13篇
  1977年   5篇
  1976年   4篇
  1975年   4篇
  1973年   5篇
排序方式: 共有4804条查询结果,搜索用时 15 毫秒
41.
42.
43.
《Chest》2014,145(4):883-895
  相似文献   
44.
45.
46.
47.
48.
49.
50.
Molecular chaperones are an essential part of the machinery that avoids protein aggregation and misfolding in vivo. However, understanding the molecular basis of how chaperones prevent such undesirable interactions requires the conformational changes within substrate proteins to be probed during chaperone action. Here we use single-molecule fluorescence spectroscopy to investigate how the DnaJ–DnaK chaperone system alters the conformational distribution of the denatured substrate protein rhodanese. We find that in a first step the ATP-independent binding of DnaJ to denatured rhodanese results in a compact denatured ensemble of the substrate protein. The following ATP-dependent binding of multiple DnaK molecules, however, leads to a surprisingly large expansion of denatured rhodanese. Molecular simulations indicate that hard-core repulsion between the multiple DnaK molecules provides the underlying mechanism for disrupting even strong interactions within the substrate protein and preparing it for processing by downstream chaperone systems.Maintaining protein homeostasis in vivo requires a tight regulation of protein folding to prevent misfolding and aggregation. Molecular chaperones have evolved as an essential part of the cellular machinery that facilitates such processes in the complex and crowded environment of a living cell (1, 2). To assist protein folding, many chaperones proceed through complex conformational cycles in an ATP-dependent manner (35). For several chaperone systems, these cycles have been investigated in great detail by experiment and simulation (68). A remarkable example are the heat shock protein (Hsp) 70 chaperones, which are essential in prokaryotes and eukaryotes and are involved in co-translational folding, refolding of misfolded and aggregated proteins, protein translocation, and protein degradation (9). The Hsp70 chaperone DnaK from Escherichia coli together with its co-chaperone DnaJ and the nucleotide exchange factor GrpE form an ATP-driven catalytic reaction cycle (7) (Fig. 1A). Many denatured or misfolded substrate proteins are first captured by DnaJ and subsequently transferred to the DnaK–ATP complex, with DnaK in an open conformation. Substrate and DnaJ synergistically trigger DnaK’s ATPase activity, which leads to locking of the substrate in the DnaK–ADP complex, with DnaK in the closed conformation. Driven by the following GrpE-catalyzed ADP–ATP exchange, the DnaK–substrate complex dissociates (10). Since this ATP-driven cycle can even solubilize protein aggregates (11, 12), substantial forces must be transduced to the substrate protein (1315). However, as for other chaperone systems (16), surprisingly little is known about how these forces and the resulting constraints of the underlying free energy surfaces affect the conformations of the denatured or misfolded substrate proteins. To better understand this important link between chaperone action and function, we probed the conformation of a substrate protein along the different stages of the chaperone cycle of DnaK with single-molecule Förster resonance energy transfer (smFRET), correlation spectroscopy, and microfluidic mixing.Open in a separate windowFig. 1.DnaK expands the denatured substrate protein. (A) Illustration of the DnaK–ATPase cycle. (B) Surface representation of rhodanese (PDB ID code 1RHS) with the subdomains indicated in different gray levels and the label positions of fluorescent dyes for single-molecule FRET measurements shown schematically. (C) FRET efficiency histograms of native rhodanese (gray) and denatured rhodanese under native conditions transiently populated in the microfluidic mixer (colored, measured 125 ms after dilution of rhodanese into native conditions). (D) FRET efficiency histograms of DnaJ–rhodanese complexes (0.5 µM DnaJ). (E) FRET efficiency histograms of DnaK–rhodanese complexes (0.5 µM DnaJ, 10 µM DnaK, and 1 mM ATP; DnaK and DnaJ were added simultaneously to rhodanese). Black lines indicate the DnaK–rhodanese complex population resulting from a fit that takes into account the residual population of refolded and DnaJ-bound rhodanese. The vertical lines in CE indicate the positions of the FRET efficiency peaks of the native population of the respective rhodanese variants. The small populations at zero transfer efficiency in D (note the axis scaling and the small amplitudes of this population compared with E) originate from incomplete elimination of molecules with inactive acceptor fluorophores by pulsed interleaved excitation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号