首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   7篇
  国内免费   3篇
基础医学   2篇
临床医学   9篇
内科学   7篇
皮肤病学   2篇
特种医学   1篇
外科学   1篇
综合类   8篇
眼科学   1篇
药学   36篇
中国医学   2篇
肿瘤学   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   5篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   4篇
  2013年   16篇
  2012年   4篇
  2011年   8篇
  2010年   10篇
  2009年   1篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2005年   3篇
  2002年   1篇
排序方式: 共有70条查询结果,搜索用时 343 毫秒
61.
62.
Purpose: To investigate the contribution of the most frequent single nucleotide polymorphism (SNPs) of the organic anion transporting polypeptide 1B1 (OATP1B1) 388A>G to the pharmacokinetics of pitavastatin in Chinese healthy volunteers. Methods: Eighteen healthy volunteers participated in this study. Group 1 consisted of nine subjects who were of 388AA wild‐type OATP1B1 genotype. Group 2 consisted of seven subjects with the 388GA genotype and two 388GG homozygotes. Two milligram of pitavastatin was administered orally to the volunteers. The plasma concentration of pitavastatin was measured for up to 48 h by liquid chromatography–mass spectrometry (LC–MS). Results: The pharmacokinetic parameters of pitavastatin were significantly different between the two genotyped groups. The concentration (Cmax) value was higher in the 388GA + 388GG group than that in the 388AA group (39·22 ± 8·45 vs. 22·90 ± 4·03 ng/mL, P = 0·006). The area under the curve to the last measurable concentration (AUC0–48) and area under the curve extrapolated to infinity (AUC0–∞) of pitavastatin were lower in the 388AA group than in the 388GA + 388GG group (100·42 ± 21·19 vs. 182·19 ± 86·46 ng h/mL, P = 0·024; 108·12 ± 24·94 vs. 199·64 ± 98·70ng h/mL, P = 0·026) respectively. The oral clearance (Cl/F) was lower in the 388GA + 388GG group than that in the 388AA group (12·46 ± 4·79 vs. 19·21 ± 3·74/h, P = 0·012). The elimination of half‐life (t1/2) and peak concentration times (Tmax) values showed no difference between these groups. Conclusions: The OATP 388A>G polymorphism causes significant alterations in the pharmacokinetics of pitavastatin in healthy Chinese volunteers and this may well be clinically significant.  相似文献   
63.
64.
AIMS: To compare the effects of grapefruit juice (GFJ) on the pharmacokinetics of pitavastatin and atorvastatin. METHODS: In a randomized, four-phase crossover study, eight healthy subjects consumed either GFJ or water t.i.d. for 4 days in each trial. On each final day, a single dose of 4 mg pitavastatin or 20 mg atorvastatin was administered. RESULTS: GFJ increased the mean AUC(0-24) of atorvastatin acid by 83% (95% CI 23-144%) and that of pitavastatin acid by 13% (-3 to 29%). CONCLUSIONS: Pitavastatin, unlike atorvastatin, appears to be scarcely affected by the CYP3A4-mediated metabolism.  相似文献   
65.
目的:建立灵敏、快速的液相色谱-串联质谱(LC-MS-MS)法测定人血浆中匹伐他汀,并用于药动学研究。方法:血浆样品经乙腈沉淀蛋白后,以乙腈-5 mmol·L~(-1)醋酸铵溶液(90:10,V:V)为流动相,Zorbax XDB C_8柱分离。采用电喷雾电离源(ESI),以多反应监测(MRM)方式进行正离子检测。用于定量分析的离子分别为m/z 422→m/z 290(匹伐他汀)和m/z 515→m/z 276(内标,替米沙坦)。结果:测定血浆中匹伐他汀的线性范围为0.1~100μg·L~(-1),定量下限为0.1μg·L~(-1)。日内、日间精密度(RSD)均小于12.0%,准确度(RE)在±2.4%以内。结论:该方法选择性好、灵敏度高、操作简便,适用于匹伐他汀的临床药动学研究。  相似文献   
66.
《Clinical therapeutics》2020,42(10):2021-2035.e3
PurposeDyslipidemia is an important risk factor for cardiovascular disease (CVD). Statins are known to effectively reduce not only low-density lipoprotein cholesterol (LDL-C) level but also death and nonfatal myocardial infarction due to coronary heart disease. The risk for CVD from atherogenic dyslipidemia persists when elevated triglyceride (TG) and reduced high-density lipoprotein cholesterol (HDL-C) levels are not controlled with statin therapy. Therefore, statin/fenofibrate combination therapy is more effective in reducing CVD risk. Here, we assessed the efficacy and tolerability of pitavastatin/fenofibrate combination therapy in patients with mixed dyslipidemia and a high risk for CVD.MethodsThis multicenter, randomized, double-blind, parallel-group, therapeutic-confirmatory clinical trial evaluated the efficacy and tolerability of fixed-dose combination therapy with pitavastatin/fenofibrate 2/160 mg in Korean patients with a high risk for CVD and a controlled LDL-C level (<100 mg/dL) and a TG level of 150–500 mg/dL after a run-in period with pitavastatin 2 mg alone. In the 8-week main study, 347 eligible patients were randomly assigned to receive pitavastatin 2 mg with or without fenofibrate 160 mg after a run-in period. In the extension study, patients with controlled LDL-C and non–HDL-C (<130 mg/dL) levels were included after the completion of the main study. All participants in the extension study received the pitavastatin/fenofibrate combination therapy for 16 weeks for the assessment of the tolerability of long-term treatment.FindingsThe difference in the mean percentage change in non–HDL-C from baseline to week 8 between the combination therapy and monotherapy groups was −12.45% (95% CI, −17.18 to −7.72), and the combination therapy was associated with a greater reduction in non-HDL-C. The changes in lipid profile, including apolipoproteins, fibrinogen, and high-sensitivity C-reactive protein from baseline to weeks 4 and 8 were statistically significant with combination therapy compared to monotherapy at all time points. Furthermore, the rates of achievement of non–HDL-C and apolipoprotein B targets at week 8 in the combination therapy and monotherapy groups were 88.30% versus 77.98% (P = 0.0110) and 78.94% versus 68.45% (P = 0.0021), respectively. The combination therapy was well tolerated, with a safety profile similar to that of statin monotherapy.ImplicationsIn these Korean patients with mixed dyslipidemia and a high risk for CVD, combination therapy with pitavastatin/fenofibrate was associated with a greater reduction in non–HDL-C compared with that with pitavastatin monotherapy, and a significantly improvement in other lipid levels. Moreover, the combination therapy was well tolerated, with a safety profile similar to that of statin monotherapy. Therefore, pitavastatin/fenofibrate combination therapy could be effective and well tolerated in patients with mixed dyslipidemia. ClinicalTrials.gov identifier: NCT03618797.  相似文献   
67.
Pitavastatin is an antihyperlipidemic agent, a potent inhibitor of 3‐hydroxymethyl‐glutaryl‐CoA reductase, which is selectively taken up into the liver mainly via hepatic organic anion transporting polypeptide 1B1 (OATP1B1). OATP1B1 can accept a variety of organic anions, and previous reports indicated that it is responsible for the hepatic clearance of several clinically used anionic drugs. Therefore, the pharmacokinetics and the hepatic distribution of pitavastatin provide an insight into the function of OATP1B1 in humans. For the development of the in vivo evaluation of OATP1B1 function by positron emission tomography imaging, we designed a novel [18F]pitavastatin derivative ([18F]PTV‐F1), in which a [18F]fluoroethoxy group is substituted for the [18F]fluoro group of [18F]pitavastatin, with the aim of convenient radiolabeling protocol and high radiochemical yield. In vitro studies suggested that transport activities of PTV‐F1 mediated by OATP1B1 and OATP1B3 were very similar to those of pitavastatin and PTV‐F1 was metabolically stable in human liver microsomes. In the radiosynthesis of [18F]PTV‐F1 from the tosylate precursor, nucleophilic fluorination and subsequent deprotection were performed using a one‐pot procedure. [18F]PTV‐F1 was obtained with a radiochemical yield of 45% ± 3% (n = 3), and the operating time for the radiosynthesis of [18F]PTV‐F1 is very short (30 minutes) compared with [18F]pitavastatin.  相似文献   
68.

Purpose

Results from a Phase III, European, noninferiority trial in elderly (age ≥65 years) patients with primary hyperlipidemia or mixed (combined) dyslipidemia demonstrated significantly greater reductions in LDL-C for pitavastatin versus pravastatin across 3 pair-wise dose comparisons (1 mg vs 10 mg, 2 mg vs 20 mg, and 4 mg vs 40 mg, respectively). The present study investigated whether pitavastatin 4 mg is superior to pravastatin 40 mg in LDL-C reduction in adults (18–80 years old) with primary hyperlipidemia or mixed (combined) dyslipidemia.

Methods

This was a Phase IV, multicenter, randomized, double-blind, double-dummy, active-control superiority study conducted in the United States. Patients with baseline LDL-C levels of 130 to 220 mg/dL (inclusive) and triglyceride levels ≤400 mg/dL after a 6-week washout/dietary stabilization period were randomized to 12 weeks of once-daily treatment with either pitavastatin 4 mg or pravastatin 40 mg.

Findings

A total of 328 subjects (164 per treatment arm) were randomized (mean age, 57.9 years [76% were aged <65 years]; 49.4% women; mean body mass index, 30.2 kg/m2) to treatment. The median percent change in LDL-C from baseline to the week 12 endpoint was –38.1% for pitavastatin 4 mg and –26.4% for pravastatin 40 mg; the difference in median percent change between treatments was –12.5% (P < 0.001). Differences between treatments in median percent reductions from baseline for apolipoprotein B, total cholesterol, and non–HDL-C were also significant in favor of pitavastatin (P < 0.001). Both treatments significantly (P < 0.001) increased HDL-C and decreased triglycerides, but the differences between treatments were not statistically significant. The overall rate of treatment-emergent adverse events was 47.6% (78 of 164) for pitavastatin and 44.5% (73 of 164) for pravastatin. Myalgia was reported by 3 patients (1.8%) in the pitavastatin group and by 4 patients (2.4%) in the pravastatin group. There were no reports of myositis or rhabdomyolysis.

Implications

Pitavastatin 4 mg demonstrated superior LDL-C reductions compared with pravastatin 40 mg after 12 weeks of therapy in adults with primary hyperlipidemia or mixed (combined) dyslipidemia. There were no new safety findings in the trial. Clinical Trials.gov identifier: NCT01256476.  相似文献   
69.
This study aimed to investigate whether pitavastatin protected against injury induced by advanced glycation end products products (AGEs) in neonatal rat cardiomyocytes, and to examine the underlying mechanisms. Cardiomyocytes of neonatal rats were incubated for 48 hours with AGEs (100 mg/mL), receptor for advanced glycation end products (RAGE), antibody (1 mg/mL) and pitavastatin (600 ng/mL). The levels of p62 and beclin1 were determined by Western blotting. Mitochondrial membrane potential (DYm) and the generation of reactive oxygen species (ROS) were measured through the JC-1 and DCFH-DA. In the AGEs group, the expression of beclin1 was remarkably increased compared to the control group, while the expression of p62 was significantly decreased. AGEs also markedly decreased DYm and significantly increased ROS compared with the control group. After treatment with RAGE antibody or pitavastatin, the level of beclin1 was markedly decreased compared with the AGEs group, but the level of p62 was remarkably increased. In the AGEs + RAGE antibody group and AGEs + pitavastatin group, DYm was significantly increased and ROS was remarkably decreased compared with the AGEs group. In conclusion, AGEs-RAGE may induce autophagy of cardiomyocytes by generation of ROS and pitavastatin could protect against AGEs-induced injury against cardiomyocytes.  相似文献   
70.
Statins inhibit the synthesis of mevalonate, a precursor isoprenoid molecule to geranylgeraniol that is necessary for the post-translational modification of several small GTPase oncogenes. Despite numerous preclinical studies suggesting that statins can be effective anticancer agents, prospective clinical trials have failed to demonstrate any clinical benefit in patients with cancer. We previously demonstrated that geranylgeraniol suppresses the activity of statins in cell culture studies, and that pitavastatin can cause regression of ovarian cancer xenografts in mice if the animals'' diet is modified to avoid the inclusion of geranylgeraniol. Dietary sources of geranylgeraniol may consequently limit the activity of statins in cancer clinical trials. The present study tested several foods to identify those that affected the cytotoxic activity of pitavastatin towards ovarian cancer cells. Solvent extracts of several foods were tested for their ability to suppress the effects of pitavastatin in cell growth assays. The results revealed that pitavastatin induced cell death in ovarian cancer cells (IC50=5.2 µM) and this was blocked by geranylgeraniol whereas other products of the mevalonate pathway (coenzyme Q, dolichol or cholesterol) had no effect on the activity of pitavastatin in cell growth assays. Solvent extracts from several foods, especially oils (apart from rapeseed), also blocked the cytotoxic activity of pitavastatin. Several extracts from a range of fruit, vegetables and carbohydrate-rich foods also did not block the activity of pitavastatin. However, extracts from beans, lettuce, oats, eggs and various nuts reduced the activity of pitavastatin. These data identified foods that patients could eat to potentially improve the outcome of clinical trials of pitavastatin in cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号