首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1475篇
  免费   165篇
  国内免费   25篇
耳鼻咽喉   5篇
儿科学   19篇
妇产科学   40篇
基础医学   99篇
口腔科学   3篇
临床医学   274篇
内科学   520篇
皮肤病学   55篇
神经病学   82篇
特种医学   54篇
外科学   125篇
综合类   191篇
预防医学   68篇
眼科学   9篇
药学   53篇
  2篇
中国医学   22篇
肿瘤学   44篇
  2024年   4篇
  2023年   48篇
  2022年   43篇
  2021年   107篇
  2020年   99篇
  2019年   74篇
  2018年   81篇
  2017年   94篇
  2016年   80篇
  2015年   63篇
  2014年   99篇
  2013年   109篇
  2012年   61篇
  2011年   82篇
  2010年   73篇
  2009年   65篇
  2008年   66篇
  2007年   72篇
  2006年   46篇
  2005年   51篇
  2004年   23篇
  2003年   28篇
  2002年   15篇
  2001年   12篇
  2000年   16篇
  1999年   12篇
  1998年   7篇
  1997年   16篇
  1996年   10篇
  1995年   8篇
  1994年   8篇
  1993年   5篇
  1992年   8篇
  1991年   10篇
  1990年   6篇
  1989年   8篇
  1988年   8篇
  1987年   7篇
  1986年   8篇
  1985年   8篇
  1984年   4篇
  1983年   6篇
  1982年   3篇
  1981年   5篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1975年   1篇
  1973年   1篇
排序方式: 共有1665条查询结果,搜索用时 765 毫秒
71.
无创通气治疗COPD所致Ⅱ型呼吸衰竭昏迷患者的临床研究   总被引:1,自引:0,他引:1  
目的探讨无创通气治疗由慢性阻塞性肺部疾病(chronic obstructive pulmonary disease,COPD)引起Ⅱ型呼吸衰竭而出现昏迷的患者的临床疗效。方法对47例呼吸道分泌物不多的COPDⅡ型呼吸衰竭引起昏迷的患者进行无创双水平正压(BIPAP)通气,观察上机前和上机后2小时及上机后10小时的神志、心率、呼吸频率、血气分析,成功脱机率,有创通气上机率。结果47例中38例(81%)进行无创通气后2、10h,神志、心率、呼吸频率、血气分析均有显著性改善,并成功避免了有创通气,这其中包括3例肥胖患者(BMI≥30)。9例(19%)加重患者。结论呼吸道分泌物不多的COPDⅡ型呼吸衰竭昏迷患者无创通气仍不失为一种有效的治疗手段。对伴有肥胖的患者选择无创通气应慎重。  相似文献   
72.
目的 比较不同气道湿化液应用于无创机械通气的效果。方法 将2016年5月至2017年5月收入东方肝胆外科医院的121例无创机械通气患者,按照随机数字表法分为A、B、C组。A组40例患者湿化液为灭菌注射用水;B组40例患者湿化液为0.9%氯化钠溶液;C组41例患者湿化液为稀释后浓度为1.25%碳酸氢钠溶液。比较3组痰液的黏稠度和湿化舒适度。结果 第1天3组的痰液黏稠度组间比较,差异无统计学意义(F=0.230,P=0.795);第2天3组痰液黏稠度比较,A组黏稠度最高,B组次之,C组最低,差异有统计学意义,(F=4.416,P<0.05)。第3天3组痰液黏稠度比较,A组黏稠度最高,B组次之,C组最低,差异有统计学意义(F=11.388,P<0.001)。3组湿化后舒适度评分C组最优,组间比较有统计学意义(F=37.901,P<0.001)。结论 1.25%碳酸氢钠溶液湿化可以使痰液更为稀释,湿化后患者舒适度较好,对于痰液较多的患者可以优先考虑使用其作为无创呼吸机湿化液。  相似文献   
73.
Therapeutic and diagnostic nanomaterials are being intensely studied for several diseases, including cancer and atherosclerosis. However, the exact mechanism by which nanomedicines accumulate at targeted sites remains a topic of investigation, especially in the context of atherosclerotic disease. Models to accurately predict transvascular permeation of nanomedicines are needed to aid in design optimization. Here we show that an endothelialized microchip with controllable permeability can be used to probe nanoparticle translocation across an endothelial cell layer. To validate our in vitro model, we studied nanoparticle translocation in an in vivo rabbit model of atherosclerosis using a variety of preclinical and clinical imaging methods. Our results reveal that the translocation of lipid–polymer hybrid nanoparticles across the atherosclerotic endothelium is dependent on microvascular permeability. These results were mimicked with our microfluidic chip, demonstrating the potential utility of the model system.Improving the design of nanomedicines is key for their success and ultimate clinical application (1). The accumulation of such therapeutic or diagnostic nanomaterials primarily relies on enhanced endothelial permeability of the microvasculature in diseased tissue (2). This holds true for a wide range of pathological conditions, including inflammation, atherosclerosis, and most notably, oncological disease (36). Although attributed to the enhanced permeability and retention (EPR) effect, the exact mechanism by which nanoparticles accumulate in tumors continues to be a topic of research (7, 8). The “leaky” vasculature of tumors, which facilitates the extravasation of nanoparticles from microvessels (9), is a heterogeneous phenomenon that varies between different tumor models and even more so in patients. Moreover, the exploitation of nanomedicines in other conditions with enhanced microvessel permeability has only recently begun to be studied in detail. For example, in the last 5 y, a small but increasing number of preclinical studies that apply nanoparticle therapy in atherosclerosis models has surfaced (10). Although several targeting mechanisms have been proposed (4), the exact mechanism by which nanoparticles accumulate in atherosclerotic plaques remains to be investigated, but is likely facilitated by highly permeable neovessels that penetrate into the plaque from the vasa vasorum (Fig. 1A), a network of microvessels that supplies the wall of larger vessels (11).Open in a separate windowFig. 1.Development of an endothelialized microfluidic device to probe nanoparticle translocation over a permeable microvessel. (A) Schematics of continuous normal capillaries surrounding the vessel wall as well as permeable capillaries that penetrate into the atherosclerotic plaque from the vasa vasorum. (B) Schematic of an endothelialized microfluidic device that consists of two-layer microfluidic channels that are separated by a porous membrane (3 μm pore) on which ECs are grown. (C) TEER was dynamically measured across the endothelial layer on the membrane between the upper and lower channels. (D) A well-established monolayer of the microvascular endothelium is formed at TEER ∼400 (Ω·cm2). (E) The monolayer becomes highly permeable when stimulated with the inflammatory mediator, TNF-α, as well as with shear stress, with disruption of intercellular junctional structures (i.e., adherens junctions) between ECs, as evidenced by patchy expression of VE–cadherin (green) in the image on the right versus the left. Blue depicts nuclei stained with DAPI. (Scale bar, 20 μm.) (F) FITC–albumin translocation through the endothelial monolayer increases when the chip is treated with TNF-α. (G) The chip with endothelium cultured in different culture media [base, +FBS, +growth factors (GFs)] for 6 h shows a decrease in TEER with increased FITC–albumin translocation. No cell indicates the membrane only. TEER was normalized to the level with no cells (membrane only). (H) Schematic and TEM image of PEGylated lipid-coated nanoparticles encapsulating PLGA-conjugated AuNCs and Cy5.5. The average size was 69.7 ± 14 nm, which was measured from TEM images. (Scale bar, 100 nm.) Details on labeling, synthesis, characterization, and large-scale production procedures can be found in Materials and Methods and Fig. S2.Advances in biomedical imaging allow the study of plaque-targeting nanoparticles in a dynamic fashion with exceptional detail (12, 13). Microchip technology has the potential to monitor nanoparticle behavior at the (sub)cellular level. Microfluidic chips in which endothelial cells (ECs) are grown in the channels can serve as unique in vitro test systems to study microvascular function and associated disorders (1418). They allow the isolation of specific biological hallmarks relevant to nanoparticle accumulation, such as the leaky endothelium. In the current study, we validate the potential utility of our microchip technology to study nanoparticle translocation over the endothelium and combine this with in vivo and ex vivo multimodality imaging studies on a rabbit model to better understand nanoparticle targeting of atherosclerotic plaques.  相似文献   
74.
染色体数目或者结构的异常是导致染色体病的物质基础。随着人类基因组计划(HGP)的成功完成以及结构基因组学、功能基因组学等学科的发展,高通量测序、PCR技术、生命科学领域的基因芯片技术与生物信息学技术相结合,使染色体病的研究日益深入,染色体病的检测方法也日益增多。新的分子诊断技术以其高灵敏度、高准确性和高通量的特点在染色体疾病的检验和诊断中应用越来越广泛,目前已逐步与传统的细胞遗传学分析相互结合、互为印证,共同实现对染色体疾病的实验室诊断。该文就染色体病的分子诊断技术及临床应用进行述评。  相似文献   
75.
Home noninvasive ventilation (NIV) is used in COPD patients with concomitant chronic hypercapnic respiratory failure in order to correct nocturnal hypoventilation and improve sleep quality, quality of life, and survival. Monitoring of home NIV is needed to assess the effectiveness of ventilation and adherence to therapy, resolve potential adverse effects, reinforce patient knowledge, provide maintenance of the equipment, and readjust the ventilator settings according to the changing condition of the patient. Clinical monitoring is very informative. Anamnesis focuses on the improvement of nocturnal hypoventilation symptoms, sleep quality, and side effects of NIV. Side effects are major cause of intolerance. Screening side effects leads to modification of interface, gas humidification, or ventilator settings. Home care providers maintain ventilator and interface and educate patients for correct use. However, patient's education should be supervised by specialized clinicians. Blood gas measurement shows a significant decrease in PaCO2 when NIV is efficient. Analysis of ventilator data is very useful to assess daily use, unintentional leaks, upper airway obstruction, and patient ventilator synchrony. Nocturnal oximetry and capnography are additional monitoring tools to assess the impact of NIV on gas exchanges. In the near future, telemonitoring will reinforce and change the organization of home NIV for COPD patients.  相似文献   
76.
77.
目的:采用无创阻抗心动图方法,观察三种麻醉方法对妊高征剖宫产病人血流动力学的影响,筛选出最佳麻醉方法。方法:选择60例中度妊高征患者随机分为3组:局麻组(A组)20例;腰-硬联合麻醉组(B组)20例;连续硬膜外麻醉组(C组)20例。采用无创血流动力学监测系统,分别在麻醉前(TI)、麻醉后(T2)、手术开始(T3)、手术结束(T4)时记录心率(HR)、收缩压(SBP)、舒张压(DBP)、心输出量(CO)、搏出指数(SI)、外周血管阻力(SVR)、左心做功(LCW)、加速度指数(ACI)、心脏指数(CI)。结果:A组:HR、SBP、DBP在T3、T4时较T1、T2增高(P<0.05);B组:HR、SBP、DBP在T2、T3时较T1降低(P<0.05);CO、SI、SVR、LCW、CI在T2-T4时降低(P<0.05)。C组:在各时间点上述血流动力学指标均无明显变化。三组间HR、SBP、DBP、CO在T2-T4之间存在明显差异(P<0.05)。结论:连续硬膜外麻醉可安全地用于妊高征剖宫产病人的麻醉,有利于维持血流动力学稳定。无创阻抗心动图监测系统可准确方便地反映病人的血流动力学变化。  相似文献   
78.
无创通气(noninvasive ventilation,NIV)具有使用方便、并发症少等优点,临床应用日趋广泛。NIV不仅可用于治疗慢性阻塞性肺疾病、支气管哮喘、急性肺损伤和急性呼吸窘迫综合征、心源性肺水肿等引起的呼吸衰竭,还可为外科手术和拒绝插管有创通气的患者提供通气支持以及协助有创通气患者早期拔管脱机等。本文综述了近年来NIV的临床应用进展。  相似文献   
79.
目的:当前国内常用针刺法测定痛觉阻滞平面,但针刺系有创操作,存在极大安全隐患,针对这种情况,研制了无创麻醉平面测定器。方法:使用高电压小电流脉冲刺激人体,在产生病觉的同时却不会造成皮肤损伤。结果:临床应用表明,针刺法(一次性注射器针头)和无创麻醉平面测定器法同时段所测痛觉阻滞平面无显著差异(p〉0.05)。结论:无创麻醉平面测定器可代替针刺用于测定痛觉阻滞平面,具有安全无创、可量化刺激强度等优点。  相似文献   
80.
以后向散射时移模型为基础,研究超声无损测温算法。实验中利用橡皮作为样品,采集超声回波信号,进一步验证了回波信号与温度变化之间的关系。根据这一关系,在改进其他时移算法的基础上,提出针对此次实验的算法。最后通过实验来验证此种算法的精确度,结果表明测量误差不大于1℃。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号