首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2079篇
  免费   185篇
  国内免费   216篇
儿科学   23篇
妇产科学   30篇
基础医学   186篇
临床医学   81篇
内科学   139篇
皮肤病学   1篇
神经病学   1059篇
特种医学   11篇
外科学   53篇
综合类   142篇
现状与发展   1篇
预防医学   27篇
眼科学   167篇
药学   426篇
  1篇
中国医学   123篇
肿瘤学   10篇
  2024年   6篇
  2023年   29篇
  2022年   29篇
  2021年   92篇
  2020年   82篇
  2019年   65篇
  2018年   72篇
  2017年   91篇
  2016年   80篇
  2015年   101篇
  2014年   131篇
  2013年   251篇
  2012年   129篇
  2011年   164篇
  2010年   164篇
  2009年   140篇
  2008年   138篇
  2007年   129篇
  2006年   127篇
  2005年   86篇
  2004年   75篇
  2003年   61篇
  2002年   70篇
  2001年   37篇
  2000年   26篇
  1999年   19篇
  1998年   27篇
  1997年   18篇
  1996年   13篇
  1995年   10篇
  1994年   7篇
  1993年   6篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
排序方式: 共有2480条查询结果,搜索用时 15 毫秒
51.
Multiple sclerosis (MS) is a chronic demyelinating disease of primary autoimmune origin with essential component of subsequent axonal degeneration. It has been found that inflammatory cells crucial for MS pathogenesis are able to release neurotrophic factors (NFs). Thus the concept of neuroprotective effect of inflammation has arisen. Over recent years, increasing number of studies has revealed that NFs play an important role in MS and its animal model — experimental autoimmune encephalomyelitis (EAE). In the current review the evidence for the role of NFs in MS pathogenesis the same as their remarkable potential in MS therapy is presented.  相似文献   
52.
Stroke mortality and morbidity is expected to rise. Despite considerable recent advances within acute ischemic stroke treatment, scope remains for development of widely applicable neuroprotective agents. Glucagon-like peptide-1 receptor agonists (GLP-1RAs), originally licensed for the management of Type 2 Diabetes Mellitus, have demonstrated pre-clinical neuroprotective efficacy in a range of neurodegenerative conditions. This systematic scoping review reports the pre-clinical basis of GLP-1RAs as neuroprotective agents in acute ischemic stroke and their translation into clinical trials. We included 35 pre-clinical studies, 11 retrospective database studies, 7 cardiovascular outcome trials and 4 prospective clinical studies. Pre-clinical neuroprotection was demonstrated in normoglycemic models when administration was delayed by up to 24 h following stroke induction. Outcomes included reduced infarct volume, apoptosis, oxidative stress and inflammation alongside increased neurogenesis, angiogenesis and cerebral blood flow. Improved neurological function and a trend towards increased survival were also reported. Cardiovascular outcomes trials reported a significant reduction in stroke incidence with semaglutide and dulaglutide. Retrospective database studies show a trend towards neuroprotection. Prospective interventional clinical trials are on-going, but initial indicators of safety and tolerability are favourable. Ultimately, we propose that repurposing GLP-1RAs is potentially advantageous but appropriately designed trials are needed to determine clinical efficacy and cost-effectiveness.  相似文献   
53.
54.
Mitochondria may be transferred from cell to cell in the central nervous system and this process may help defend neurons against injury and disease. But how mitochondria maintain their functionality during the process of release into extracellular space remains unknown. Here, we report that mitochondrial protein O-GlcNAcylation is a critical process to support extracellular mitochondrial functionality. Activation of CD38-cADPR signaling in astrocytes robustly induced protein O-GlcNAcylation in mitochondria, while oxygen-glucose deprivation and reoxygenation showed transient and mild protein modification. Blocking the endoplasmic reticulum – Golgi trafficking with Brefeldin A or slc35B4 siRNA reduced O-GlcNAcylation, and resulted in the secretion of mitochondria with decreased membrane potential and mtDNA. Finally, loss-of-function studies verified that O-GlcNAc-modified mitochondria demonstrated higher levels of neuroprotection after astrocyte-to-neuron mitochondrial transfer. Collectively, these findings suggest that post-translational modification by O-GlcNAc may be required for supporting the functionality and neuroprotective properties of mitochondria released from astrocytes.  相似文献   
55.
Multiple sclerosis (MS) is a leading cause of chronic neurological disability in young to middle-aged adults, affecting ~2.5 million people worldwide. Currently, most therapeutics for MS are systemic immunosuppressive or immunomodulatory drugs, but these drugs are unable to halt or reverse the disease and have the potential to cause serious adverse events. Hence, there is an urgent need for the development of next-generation treatments that, alone or in combination, stop the undesired autoimmune response and contribute to the restoration of homeostasis. This review analyzes current MS treatments as well as different cell-based therapies that have been proposed to restore homeostasis in MS patients (tolerogenic dendritic cells, regulatory T cells, mesenchymal stem cells, and vaccination with T cells). Data collected from preclinical studies performed in the experimental autoimmune encephalomyelitis (EAE) model of MS in animals, in vitro cultures of cells from MS patients and the initial results of phase I/II clinical trials are analyzed to better understand which parameters are relevant for obtaining an efficient cell-based therapy for MS.  相似文献   
56.
AimVasculotide (VT), an angiopoietin‐1 mimetic peptide, exerts neuroprotective effects in type one diabetic (T1DM) rats subjected to ischemic stroke. In this study, we investigated whether delayed VT treatment improves long‐term neurological outcome after stroke in T1DM rats.MethodsMale Wistar rats were induced with T1DM, subjected to middle cerebral artery occlusion (MCAo) model of stroke, and treated with PBS (control), 2 µg/kg VT, 3 µg/kg VT, or 5.5 µg/kg VT. VT treatment was initiated at 24 h after stroke and administered daily (i.p) for 14 days. We evaluated neurological function, lesion volume, vascular and white matter remodeling, and inflammation in the ischemic brain. In vitro, we evaluated the effects of VT on endothelial cell capillary tube formation and inflammatory responses of primary cortical neurons (PCN) and macrophages.ResultsTreatment of T1DM‐stroke with 3 µg/kg VT but not 2 µg/kg or 5.5 µg/kg significantly improves neurological function and decreases infarct volume and cell death compared to control T1DM‐stroke rats. Thus, 3 µg/kg VT dose was employed in all subsequent in vivo analysis. VT treatment significantly increases axon and myelin density, decreases demyelination, decreases white matter injury, increases number of oligodendrocytes, and increases vascular density in the ischemic border zone of T1DM stroke rats. VT treatment significantly decreases MMP9 expression and decreases the number of M1 macrophages in the ischemic brain of T1DM‐stroke rats. In vitro, VT treatment significantly decreases endothelial cell death and decreases MCP‐1, endothelin‐1, and VEGF expression under high glucose (HG) and ischemic conditions and significantly increases capillary tube formation under HG conditions when compared to non‐treated control group. VT treatment significantly decreases inflammatory factor expression such as MMP9 and MCP‐1 in macrophages subjected to LPS activation and significantly decreases IL‐1β and MMP9 expression in PCN subjected to ischemia under HG conditions.ConclusionDelayed VT treatment (24 h after stroke) significantly improves neurological function, promotes vascular and white matter remodeling, and decreases inflammation in the ischemic brain after stroke in T1DM rats.  相似文献   
57.
Both genetic and environmental factors are important in the pathogenesis of Parkinson's disease. As α-synuclein is a major constituent of Lewy bodies, a pathologic hallmark of Parkinson's disease, genetic aspects of α-synuclein is widely studied. However, the influence of dietary factors such as quercetin on α-synuclein was rarely studied. Herein we aimed to study the neuroprotective role of quercetin against various toxins affecting apoptosis, autophagy and aggresome, and the role of quercetin on α-synuclein expression. PC12 cells were pre-treated with quercetin(100, 500, 1,000 μM) and then together with various drugs such as 1-methyl-4-phenylpyridinium(MPP+; a free radical generator), 6-hydroxydopamine(6-OHDA; a free radical generator), ammonium chloride(an autophagy inhibitor), and nocodazole(an aggresome inhibitor). Cell viability was determined using a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltertazolium bromide(MTT) assay. Apoptosis was detected by annexin V-fluorescein isothiocyanate and propidium iodide through the use of fluorescence activated cell sorter. α-Synuclein expression was detected by western blot assay and immunohistochemistry. The role of α-synuclein was further studied by knocking out α-synuclein using RNA interference. Cell viability increased at lower concentrations(100 and 500 μM) of quercetin but decreased at higher concentration(1,000 μM). Quercetin exerted neuroprotective effect against MPP+, ammonium chloride and nocodazole at 100 μM. MPP+ induced apoptosis was decreased by 100 μM quercetin. Quercetin treatment increased α-synuclein expression. However, knocking out α-synuclein exerted no significant effect on cell survival. In conclusion, quercetin is neuroprotective against toxic agents via affecting various mechanisms such as apoptosis, autophagy and aggresome. Because α-synuclein expression is increased by quercetin, the role of quercetin as an environmental factor in Parkinson's disease pathogenesis needs further investigation.  相似文献   
58.
亚低温在蛛网膜下腔出血急性期的脑保护作用   总被引:4,自引:0,他引:4  
亚低温对脑动脉瘤性蛛网膜下腔出血急性期脑损伤保护作用的研究报道较少。在动脉瘤性蛛网膜下腔出血急性期,有多种脑损伤机制参与脑损伤的发生。亚低温在脑梗死早期能对抗多种脑损害因素,应用于动脉瘤性蛛网膜下腔出血急性期,有可能发挥脑保护作用。  相似文献   
59.
生长激素的生理作用主要是促进物质代谢与生长发育。研究表明,生长激素对机体各器官和各组织均有影响,在神经系统疾病的神经再生和神经保护过程中,生长激素也起到了一定的作用。本文总结生长激素治疗常见神经系统疾时所起的作用以及可能的机制。  相似文献   
60.
青光眼是以特征性视神经损伤和视功能损害为特点的一类疾病,病理性高眼压是主要危险因素。在青光眼治疗方面,既要降低眼压,又要保护视神经。视神经损伤的机制是神经节细胞的凋亡,能阻止或延缓神经节细胞凋亡的方法称为青光眼的视神经保护治疗。青光眼视神经保护治疗是目前研究的热点,主要包括抗青光眼药物、热激蛋白、神经干细胞、神经营养因子及基因治疗和中医药等研究。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号