首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   15篇
  国内免费   7篇
儿科学   1篇
基础医学   6篇
口腔科学   1篇
临床医学   9篇
内科学   23篇
皮肤病学   5篇
神经病学   10篇
特种医学   3篇
外科学   1篇
综合类   8篇
预防医学   9篇
眼科学   4篇
药学   16篇
中国医学   11篇
肿瘤学   10篇
  2024年   3篇
  2023年   6篇
  2022年   4篇
  2021年   13篇
  2020年   16篇
  2019年   13篇
  2018年   5篇
  2017年   7篇
  2016年   7篇
  2015年   9篇
  2014年   6篇
  2013年   6篇
  2012年   5篇
  2011年   5篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
排序方式: 共有117条查询结果,搜索用时 343 毫秒
41.
Boslem E  Meikle PJ  Biden TJ 《Islets》2012,4(3):177-187
Recent technical advances have re-invigorated the study of sphingolipid metabolism in general, and helped to highlight the varied and important roles that sphingolipids play in pancreatic β-cells. Sphingolipid metabolites such as ceramide, glycosphingolipids, sphingosine 1-phosphate and gangliosides modulate many β-cell signaling pathways and processes implicated in β-cell diabetic disease such as apoptosis, β-cell cytokine secretion, ER-to-golgi vesicular trafficking, islet autoimmunity and insulin gene expression. They are particularly relevant to lipotoxicity. Moreover, the de novo synthesis of sphingolipids occurs on many subcellular membranes, in parallel to secretory vesicle formation, traffic and granule maturation events. Indeed, the composition of the plasma membrane, determined by the activity of neutral sphingomyelinases, affects β-cell excitability and potentially insulin exocytosis while another glycosphingolipid, sulfatide, determines the stability of insulin crystals in granules. Most importantly, sphingolipid metabolism on internal membranes is also strongly implicated in regulating β-cell apoptosis.  相似文献   
42.
43.
Postprandial lipemia (PPL) is an important risk factor for cardiovascular disease. Inter-individual variation in the dietary response to a meal is known to be influenced by genetic factors, yet genes that dictate variation in postprandial lipids are not completely characterized. Genetic studies of the plasma lipidome can help to better understand postprandial metabolism by isolating lipid molecular species which are more closely related to the genome. We measured the plasma lipidome at fasting and 6 h after a standardized high-fat meal in 668 participants from the Genetics of Lipid-Lowering Drugs and Diet Network study (GOLDN) using ultra-performance liquid chromatography coupled to (quadrupole) time-of-flight mass spectrometry. A total of 413 unique lipids were identified. Heritable and responsive lipid species were examined for association with single-nucleotide polymorphisms (SNPs) genotyped on the Affymetrix 6.0 array. The most statistically significant SNP findings were replicated in the Amish Heredity and Phenotype Intervention (HAPI) Heart Study. We further followed up findings from GOLDN with a regional analysis of cytosine-phosphate-guanine (CpGs) sites measured on the Illumina HumanMethylation450 array. A total of 132 lipids were both responsive to the meal challenge and heritable in the GOLDN study. After correction for multiple testing of 132 lipids (α = 5 × 10−8/132 = 4 × 10−10), no SNP was statistically significantly associated with any lipid response. Four SNPs in the region of a known lipid locus (fatty acid desaturase 1 and 2/FADS1 and FADS2) on chromosome 11 had p < 8.0 × 10−7 for arachidonic acid FA(20:4). Those SNPs replicated in HAPI Heart with p < 3.3 × 10−3. CpGs around the FADS1/2 region were associated with arachidonic acid and the relationship of one SNP was partially mediated by a CpG (p = 0.005). Both SNPs and CpGs from the fatty acid desaturase region on chromosome 11 contribute jointly and independently to the diet response to a high-fat meal.  相似文献   
44.
AIM: To explore the roles of phospholipids and sphingolipids in the inflammatory process of uveitis. METHODS: Aqueous humor (AH) and the retina were obtained from endotoxin-induced uveitis (EIU) rats during the acute inflammation stage (24h after endotoxin injection). Lipids were extracted using a modified Bligh and Dyer method and subjected to mass spectrometric identification using class-specific lipid standards and ratiometric quantification. Relative intensity analysis was performed to evaluate the amount change of common lipids between the EIU and control groups. RESULTS: Unique lipid species encompassing all five phospholipid classes were found in both control and the EIU AH and retina. Commensurate with the significantly increased level of lysophospholipids in the EIU AH and retina, we found that the ratio of lysophospholipids to total phospholipids was significantly increased too. We also detected a significant increase in 18:0 lysophosphatidylcholine levels in the EIU group (fold change=6.4 in AH and 3.8 in retina). Cer240, Cer241, and SM240 levels remarkably increased in the EIU AH. Enhanced C12 ceramide-1-phosphate (C12 C-1-P), C16 C-1-P, C24 C-1-P, and upregulated Cer160, Cer240, SM120, and SM240 were found in EIU retina. C-1-P is believed to restore homeostasis by inhibiting nuclear factor kappa B (NF-κB) activation. However, we still found elevated NF-κB levels in the EIU retina. CONCLUSION: Taken together, a variety of lipids might have played a critical role in EIU inflammation. Exogenous topical application of these protective lipids or inhibition of these pro-inflammatory lipids may be useful therapeutic strategies for the resolution of EIU.  相似文献   
45.
Ethionamide (ETH), a second-line drug for multidrug-resistant tuberculosis, is known to cause hepatic steatosis in rats and humans. To investigate predictive biomarkers for ETH-induced steatosis, we performed lipidomics analysis using plasma and liver samples collected from rats treated orally with ETH at 30 and 100 mg/kg for 14 days. The ETH-treated rats developed hepatic steatosis with Oil Red O staining-positive vacuolation in the centrilobular hepatocytes accompanied by increased hepatic contents of triglycerides (TG) and decreased plasma TG and total cholesterol levels. A multivariate analysis for lipid profiles revealed differences in each of the 35 lipid species in the plasma and liver between the control and the ETH-treated rats. Of those lipids, phosphatidylcholine (PC) (18:0/20:4) decreased dose-dependently in both the plasma and liver. Moreover, serum TG-rich very low-density lipoprotein (VLDL) levels, especially the large particle fraction of VLDL composed of PC containing arachidonic acid (20:4) involved in hepatic secretion of TG, were decreased dose-dependently. In conclusion, the decreased PC (18:0/20:4) in the liver, possibly leading to suppression of hepatic TG secretion, was considered to be involved in the pathogenesis of the ETH-induced hepatic steatosis. Therefore, plasma PC (18:0/20:4) levels are proposed as mechanism-related biomarkers for ETH-induced hepatic steatosis.  相似文献   
46.
The metabolome is sensitive to genetic and environmental factors contributing to complex diseases such as type 1 diabetes (T1D). Metabolomics is the study of biochemical and physiological processes involving metabolites. It is therefore one of the key platforms for the discovery and study of pathophysiological phenomena leading to T1D and the development of T1D-associated complications. Although the application of metabolomics in T1D research is still rare, metabolomic research has already advanced across the full spectrum, from disease progression to the development of diabetic complications. Metabolomic studies in T1D have contributed to an improved etiopathogenic understanding and demonstrated their potential in the clinic. For example, metabolomic data from recent T1D studies suggest that a specific metabolic profile, or metabotype, precedes islet autoimmunity and the development of overt T1D. These early metabolic changes are attributed to many biochemical pathways, thus suggesting a systemic change in metabolism which may be inborn. Based on this evidence, the role of the metabolome in the progression to T1D is therefore to facilitate specific biochemical processes associated with T1D, and to contribute to the development of a vulnerable state in which disease is more likely to be triggered. This may have important implications for the understanding of T1D pathophysiology and early disease detection and prevention.  相似文献   
47.
Lipidomics is an emerging field in biomedical research. It aims at systems scale detection, characterisation and quantification of lipids. Lipidomics is developing as an independent discipline at the interface of lipid biology, technology and medicine. Technological advancements, most notably in liquid chromatography and mass spectrometry, allow sensitive and highly selective analysis of lipids with diverse chemical composition and in complex mixtures. Comparative analysis of such lipid profiles, which stem from two physiologically linked conditions is particularly powerful for applications in drug and biomarker development. First, it leads to the identification of pathways related to lipid metabolism. Second, multiparameter lipid biomarkers will provide better diagnostics in preclinical trials using model organisms and in clinical presentations in humans.  相似文献   
48.
Lipid droplets are ubiquitous cellular structures in eukaryotes and are required for lipid metabolism. Little is currently known about plant lipid droplets other than oil bodies. Here, we define dual roles for chloroplast lipid droplets (plastoglobules) in energy and prenylquinone metabolism. The prenylquinones--plastoquinone, plastochromanol-8, phylloquinone (vitamin K(1)), and tocopherol (vitamin E)--are partly stored in plastoglobules. This work shows that NAD(P)H dehydrogenase C1 (NDC1) (At5g08740), a type II NAD(P)H quinone oxidoreductase, associates with plastoglobules. NDC1 reduces a plastoquinone analog in vitro and affects the overall redox state of the total plastoquinone pool in vivo by reducing the plastoquinone reservoir of plastoglobules. Finally, NDC1 is required for normal plastochromanol-8 accumulation and is essential for vitamin K(1) production.  相似文献   
49.
[摘要] 脂类组学是一门新兴的代谢组学的分支学科,旨在系统研究生物体内所有脂类分子的特性,以及它们在蛋白质表达和基因表达调节过程中的作用。脂类参与调节生物体的众多生理过程,包括能量存储、信号转导、细胞凋亡等,随着新的分析技术的发展,特别是质谱技术的应用和发展,使得脂类的测定能够快速、精确和高通量的进行。大量研究表明,脂类代谢异常与肿瘤的发生发展有着密切联系,脂类组学技术的应用能揭示与肿瘤相关的脂类变化,找到其异常的代谢通路,并在肿瘤脂类生物标记物的识别,肿瘤早期诊断,抗肿瘤药物靶点的发现等方面展现出广泛的应用前景。本文就上述研究的近期进展做简要评述。 [关键字] 脂类;脂类组学;质谱技术;肿瘤  相似文献   
50.
Background & aimsPatients with cystathionine β-synthase deficiency (CBSD) exhibit high circulating levels of homocysteine and enhanced lipid peroxidation. We have characterized the plasma lipidome in CBSD patients and related lipid abnormalities with reactions underlying enhanced homocysteine levels.Methods and resultsUsing an ultra-high-performance liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry method, plasma lipids were determined with an untargeted lipidomics approach in 11 CBSD patients and 11 matched healthy subjects (CTRL). Compared to CTRL, CBSD patients had a higher medium and long-chain polyunsaturated fatty acids (PUFA) content in phosphatidylethanolamine (PE) and lysophosphatidylethanolamine (LPE) species (p < 0.02), and depletion of phosphatidylcholine (PC; p = 0.02) and of lysophosphatidylcholine (LPC; p = 0.003) species containing docosahexaenoic acid (DHA), suggesting impaired phosphatidylethanolamine-N-methyltransferase (PEMT) activity. PEMT converts PE into PC using methyl group by S-adenosylmethionine (SAM) thus converted in S-adenosylhomocysteine (SAH). Whole blood SAM and SAH concentrations by liquid chromatography tandem mass spectrometry were 1.4-fold (p = 0.015) and 5.3-fold (p = 0.003) higher in CBSD patients than in CTRL. A positive correlation between SAM/SAH and PC/PE ratios (r = 0.520; p = 0.019) was found.ConclusionsA novel biochemical abnormality in CBSD patients consisting in depletion of PC and LPC species containing DHA and accumulation of PUFA in PE and LPE species is revealed by this lipidomic approach. Changes in plasma SAM and SAH concentrations are associated with such phospholipid dysregulation. Given the key role of DHA in thrombosis prevention, depletion of PC species containing DHA in CBSD patients provides a new direction to understand the poor cardiovascular outcome of patients with homocystinuria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号