首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   8篇
  国内免费   5篇
耳鼻咽喉   1篇
基础医学   91篇
口腔科学   33篇
临床医学   5篇
内科学   2篇
皮肤病学   1篇
神经病学   5篇
外科学   20篇
综合类   11篇
预防医学   2篇
眼科学   1篇
药学   30篇
中国医学   3篇
  2023年   5篇
  2022年   17篇
  2021年   12篇
  2020年   3篇
  2019年   5篇
  2018年   9篇
  2017年   3篇
  2016年   2篇
  2015年   25篇
  2014年   25篇
  2013年   13篇
  2012年   13篇
  2011年   6篇
  2010年   7篇
  2009年   10篇
  2008年   7篇
  2007年   10篇
  2006年   3篇
  2005年   9篇
  2004年   4篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1989年   1篇
  1988年   3篇
  1984年   2篇
排序方式: 共有205条查询结果,搜索用时 109 毫秒
21.
探讨一种新的仿生骨材料表面修饰煅烧牛松质骨的制备方法,以提高煅烧牛松质骨作为组织工程骨的活性。将制备好的大小一致的煅烧牛松质骨随机分成两组,分别浸泡在配制好的单倍模拟体液(SBF)和1.5倍SBF中。每组材料的浸泡时间均为7、14和21d共3个时间点。浸泡结束干燥后用扫描电镜(SEM)观察材料表面形态并分析材料表面矿化成分。通过比较筛选出效果最理想的表面修饰煅烧牛松质骨材料,研究其孔径、孔隙率、抗压和抗折强度等理化性质,并与未经表面修饰的煅烧骨材料进行比较。研究表明,煅烧骨材料在1.5倍SBF中浸泡14d可以获得最佳表面修饰效果,同时保留了原有煅烧骨材料的基本理化特性。  相似文献   
22.
目的探讨仿生物电刺激对薄型子宫内膜治疗的疗效。方法选择23例薄型子宫内膜患者作为研究对象,对所有患者均采用仿生物电刺激技术进行治疗,比较治疗前后患者子宫内膜厚度、子宫内膜(下)动脉阻力指数(RI),搏动指数(PI)、血流收缩期最高血流速度(S)/舒张期末血流速度(D)比值。结果经仿生物电刺激治疗后薄型子宫内膜患者子宫内膜厚度和血流灌注均较前增加,差异具有统计学意义(P〈O.05)。结论仿生物电刺激能增加薄型子宫内膜厚度和提高内膜血流灌注,从而提高子宫内膜的容受性;值得,临床推广应用。  相似文献   
23.
In vitro cell culture is a vital research tool for cell biology, pharmacology, toxicology, protein production, systems biology and drug discovery. Traditional culturing methods on plastic surfaces do not accurately represent the in vivo environment, and a paradigm shift from two-dimensional to three-dimensional (3-D) experimental techniques is underway. To enable this change, a variety of natural, synthetic and semi-synthetic extracellular matrix (ECM) equivalents have been developed to provide an appropriate cellular microenvironment. We describe herein an investigation of the properties of four commercially available ECM equivalents on the growth and proliferation of primary human tracheal scar fibroblast behavior, both in 3-D and pseudo-3-D conditions. We also compare subcutaneous tissue growth of 3-D encapsulated fibroblasts in vivo in two of these materials, Matrigel and Extracel. The latter shows increased cell proliferation and remodeling of the ECM equivalent. The results provide researchers with a rational basis for selection of a given ECM equivalent based on its biological performance in vitro and in vivo, as well as the practicality of the experimental protocols. Biomaterials that use a customizable glycosaminoglycan-based hydrogel appear to offer the most convenient and flexible system for conducting in vitro research that accurately translates to in vivo physiology needed for tissue engineering.  相似文献   
24.
Cell-based resorption assays for bone graft substitutes   总被引:1,自引:0,他引:1  
The clinical utilization of resorbable bone substitutes has been growing rapidly during the last decade, creating a rising demand for new resorbable biomaterials. An ideal resorbable bone substitute should not only function as a load-bearing material but also integrate into the local bone remodeling process. This means that these bone substitutes need to undergo controlled resorption and then be replaced by newly formed bone structures. Thus the assessment of resorbability is an important first step in predicting the in vivo clinical function of bone substitute biomaterials. Compared with in vivo assays, cell-based assays are relatively easy, reproducible, inexpensive and do not involve the suffering of animals. Moreover, the discovery of RANKL and M-CSF for osteoclastic differentiation has made the differentiation and cultivation of human osteoclasts possible and, as a result, human cell-based bone substitute resorption assays have been developed. In addition, the evolution of microscopy technology allows advanced analyses of the resorption pits on biomaterials. The aim of the current review is to give a concise update on in vitro cell-based resorption assays for analyzing bone substitute resorption. For this purpose models using different cells from different species are compared. Several popular two-dimensional and three-dimensional optical methods used for resorption assays are described. The limitations and advantages of the current ISO degradation assay in comparison with cell-based assays are discussed.  相似文献   
25.
26.
The continuous release of nitric oxide (NO) by the native endothelium of blood vessels plays a substantial role in the cardiovascular physiology, as it influences important pathways of cardiovascular homeostasis, inhibits vascular smooth muscle cell (VSMC) proliferation, inhibits platelet activation and aggregation, and prevents atherosclerosis. In this study, a NO-catalytic bioactive coating that mimics this endothelium functionality was presented as a hemocompatible coating with potential to improve the biocompatibility of vascular stents. The NO-catalytic bioactive coating was obtained by covalent conjugation of 3,3-diselenodipropionic acid (SeDPA) with glutathione peroxidase (GPx)-like catalytic activity to generate NO from S-nitrosothiols (RSNOs) via specific catalytic reaction. The SeDPA was immobilized to an amine bearing plasma polymerized allylamine (PPAam) surface (SeDPA-PPAam). It showed long-term and continuous ability to catalytically decompose endogenous RSNO and generate NO. The generated NO remarkably increased the cGMP synthesis both in platelets and human umbilical artery smooth muscle cells (HUASMCs). The surface exhibited a remarkable suppression of collagen-induced platelet activation and aggregation. It suppressed the adhesion, proliferation and migration of HUASMCs. Additionally, it was found that the NO catalytic surface significantly enhanced human umbilical vein endothelial cell (HUVEC) adhesion, proliferation and migration. The in vivo results indicated that the NO catalytic surface created a favorable microenvironment of competitive growth of HUVECs over HUASMCs for promoting re-endothelialization and reducing restenosis of stents in vivo.  相似文献   
27.
A concise total synthesis of (R,R)-secoisolariciresinol was achieved in four steps, featuring a biomimetic β-β’ radical coupling of two dihydroferulic acid derivatives. The conversion of secoisolariciresinol to other related lignans was ongoing.  相似文献   
28.
We propose a microfluidic system that generates nanovesicles (NVs) by slicing living cell membrane with microfabricated 500 nm-thick silicon nitride (SixNy) blades. Living cells were sliced by the blades while flowing through microchannels lined with the blades. Plasma membrane fragments sliced from the cells self-assembled into spherical NVs of ∼100–300 nm in diameter. During self-assembly, the plasma membrane fragments enveloped exogenous materials (here, polystyrene latex beads) from the buffer solution. About 30% of beads were encapsulated in NVs, and the generated NVs delivered the encapsulated beads across the plasma membrane of recipient cells, but bare beads could not penetrate the plasma membrane of recipient cells. This result implicates that the NVs generated using the method in this study can encapsulate and deliver exogenous materials to recipient cells, whereas exosomes secreted by cells can deliver only endogenous cellular materials.  相似文献   
29.
Mammalian adult skeletal muscle has a limited ability to regenerate after injury, usage or trauma. A promising strategy for successful regenerative technology is the engineering of bio interfaces that mimic the characteristics of the extracellular matrix. Human elastin-like polypeptides (HELPs) have been synthesized as biomimetic materials that maintain some peculiar properties of the native protein. We developed a novel Human Elastin Like Polypeptide obtained by fusing the elastin-like backbone to a domain present in the α2 chain of type IV collagen, containing two RGD motives. We employed this peptide as adhesion substrate for C2C12 myoblasts and compared its effects to those induced by two other polypeptides of the HELP series. Myoblast adhered to all HELPs coatings, where they assumed morphology and cytoarchitecture that depended on the polypeptide structure. Adhesion to HELPs stimulated at a different extent cell proliferation and differentiation, the expression of Myosin Heavy Chain and the fusion of aligned fibers into multinucleated myotubes. Adhesion substrates significantly altered myotubes stiffness, measured by Atomic Force Microscopy, and differently affected the cells Ca2+ handling capacity and the maturation of excitation-contraction coupling machinery, evaluated by Ca2+ imaging. Overall, our findings indicate that the properties of HELP biopolymers can be exploited for dissecting the molecular connections underlying myogenic differentiation and for designing novel substrates for skeletal muscle regeneration.  相似文献   
30.
The aim of this study was to build up a novel chiral mesoporous silica called PEIs@TA-CMS through a facile biomimetic strategy and to explore its potential to serve as a drug carrier for improving the delivery efficiency of poorly water-soluble drug. PEIs@TA-CMS was synthesized by using a chiral crystalline complex associated of tartaric acid and polyethyleneimine (PEIs) as templates, scaffolds and catalysts. The structural features including morphology, size, pore structure and texture properties were systematacially studied. The results showed that PEIs@TA-CMS was monodispersed spherical nanoparticles in a uniformed diameter of 120–130 nm with well-developed pore structure (SBET: 1009.94 m2/g, pore size <2.21 nm). Then PEIs@TA-CMS was employed as nimodipine (NMP) carrier and compared with the drug carry ability of MCM41. After drug loading, NMP was effectively transformed from the crystalline state to an amorphous state due to the space confinement in mesopores. As expected, PEIs@TA-CMS had superiority in both drug loading and drug release compared to MCM41. It could incorporate NMP with high efficiency, and the dissolution-promoting effect of PEIs@TA-CMS was more obvious because of the unique interconnected curved pore channels. Meanwhile, PEIs@TA-CMS could significantly improve the oral adsorption of NMP to a satisfactory level, which showed approximately 3.26-fold higher in bioavailability, and could effectively prolong the survival time of mice on cerebral anoxia from 10.98 to 17.33 min.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号