首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   3篇
基础医学   10篇
临床医学   2篇
外科学   19篇
综合类   3篇
中国医学   1篇
  2018年   1篇
  2017年   2篇
  2016年   5篇
  2015年   4篇
  2014年   13篇
  2013年   5篇
  2012年   3篇
  2011年   1篇
  2008年   1篇
排序方式: 共有35条查询结果,搜索用时 203 毫秒
21.
目的 研究新型多孔复合支架材料纳米羟基磷灰石(nHA)-聚乳酸羟基乙酸共聚物(PLGA)的生物相容性,探讨其作为骨组织工程支架的可行性.方法 将胎兔膝关节软骨细胞接种于制备的nHA-PLGA复合支架上,体外共同培养后采用四甲基偶氮唑蓝(MTT)法检测软骨细胞增殖活性,倒置荧光显微镜、扫描电镜观察支架材料表面和孔隙内软骨细胞黏附情况,流式细胞术检测软骨细胞周期情况.结果 实验组(A组)复合支架材料上细胞增殖活性与空白对照组(B组)相比,无统计学差异(P>0.05);倒置荧光镜、扫描电镜观察显示A组细胞在复合支架材料表面和孔隙内大量黏附、生长,其数量随着共培养时间增加呈几何级增长;流式细胞仪检测显示A组与B组细胞周期差异无统计学意义(P>0.05).结论 nHA-PLGA多孔复合支架生物相容性好,是一种性能良好的骨组织工程支架材料.  相似文献   
22.
动物模型广泛用于开发和评估人类受损关节软骨重建的组织工程技术研究。关节软骨组织再生动物模型研究,旨在通过比较动物关节软骨损伤修复前后某项治疗措施对关节软骨功能解剖、组织学和机械力学等方面的影响,进一步评估该治疗措施对关节软骨再生的可能效应,为寻找人体关节软骨缺损有效治疗方法提供可靠的理论基础。每个动物模型均具有特定优点和缺点,能否匹配所要验证的研究假设是评价动物模型合理性的标准之一。该文就不同动物模型优缺点、动物模型与人体差异、动物模型选择要求、软骨缺损再生模型及临床应用展望作一综述。  相似文献   
23.
24.
目的研究磁性纳米多孔复合(n-HA/PLLA/Fe2O3)材料的细胞相容性,探讨细胞在材料表面黏附、增殖、表达等生物学行为,为其医学应用提供实验依据。方法将大鼠成骨细胞与磁性纳米多孔复合材料共培养,采用CCK-8法检测细胞增殖、扫描电镜观察细胞在材料上的黏附、RT-PCR检测I型胶原和骨钙素基因的表达。结果 CCK-8检测显示实验组磁性纳米多孔复合材料上细胞的增殖与空白对照组没有差异性(0.05);扫描电镜观察到细胞在磁性纳米多孔复合材料的表面和孔隙内大量黏附、增殖和生长,随着共培养时间的增加,材料表面的细胞数量明显增多;RT-PCR显示随着共培养时间的增加,I型胶原基因的表达增强(0.05),骨钙素的表达无明显差异(0.05)。结论磁性纳米多孔复合支架材料适于成骨细胞的黏附、生长和分化,具有良好的细胞相容性。  相似文献   
25.
随着材料学和医学的发展,新型人工骨复合材料一直以来都是生物材料领域的研究热点之一。人工骨复合材料的研究不仅要具有良好的生物相容性,而且能够与天然骨组织间形成骨性结合,从而使植入生物体内人工骨复合材料能够长期发挥相应的生理功能[1]。  相似文献   
26.
关节软骨再生能力非常有限。目前临床上治疗关节软骨损伤常采用自体软骨细胞移植术(autologous chondrocyte implantation,ACI),其临床效果已得到肯定,但仍不十分理想。随着软骨细胞体外培养、软骨组织工程等相关学科及技术的发展,自体软骨细胞移植术已得到很大改进。然而,要达到理想的透明软骨组织完全修复关节软骨缺损仍有差距。本文从ACI技术的临床效果、软骨细胞体外培养、软骨组织工程、组织学评价和移植后软骨细胞示踪五个方面进行综述。  相似文献   
27.
目的 探讨纳米羟基磷灰石人工骨(Nano-HA)修复骨缺损的临床效果。  方法 回顾性分析了2009年9月~2012年6月采用Nano-HA人工骨治疗的27例骨缺损患者,骨缺损范围为0.3cm×1.0cm ~3.0cm×6.5cm,人工骨植入量为3~15 g。部位包括肱骨、桡骨、尺骨、股骨、胫骨、跟骨。骨缺损原因包括骨折22例,骨肿瘤5例。分别在术后1周、1个月和3个月进行临床和X线片检查,观察治疗效果。  结果 随访时间11个月~26个月,平均18.5个月,骨缺损区Nano-HA与宿主骨直接愈合,相容性好,与原骨界面间无间隙,术后观察未见不良反应。  结论 Nano-HA人工骨具有良好的生物相容性,是一种理想的骨缺损修复材料。  相似文献   
28.
目的:以骨髓间充质干细胞(bone marrow mesenchymal stem cells, BMSCs)为种子细胞,将携带低氧诱导因子-1α(hypoxia-inducible factor-1α, HIF-1α)的慢病毒感染BMSCs后与纳米羟基磷灰石人工骨(Nano-hydroxyapatite, Nano-HA)复合,填充植入兔桡骨缺损部位,探讨HIF-1α对骨缺损的修复作用。方法:将构建的重组HIF-1α慢病毒质粒转染293Ta细胞。取兔胫骨的骨髓,使用全骨髓贴壁筛选法分离培养BMSCs,通过形态观察及流式细胞仪检测细胞。将携带HIF-1α慢病毒感染BMSCs。将感染携带HIF-1α慢病毒后的BMSCs与Nano-HA共培养得到HIF-1α-eGFP/BMSCs/Nano-HA人工骨材料,将体外复合培养后的人工骨材料填充植入兔桡骨骨缺损部位,使用新西兰大白兔30只,随机分为3组,每组10只。实验后12周分别检测兔桡骨大体标本、X光、病理切片,分析比较桡骨缺损的愈合情况。结果:1、将携带HIF-1α慢病毒质粒转染293Ta细胞48小时,收取病毒,计算得出病毒滴度为5.0×107TU/ml。流式细胞仪对细胞表面标记物CD90、CD105和CD34、CD45检测,CD90、CD105阳性率为99.3%,CD34、CD45为阴性。2、动物实验:在术后12周对各组大体标本、X线、组织切片进行检测,发现A组HIF-1α-eGFP/BMSCs/Nano-HA复合人工骨、B组BMSCs/Nano-HA复合人工骨均可促进骨缺损修复,而A组HIF-1α-eGFP/BMSCs/ Nano-HA复合人工骨的新骨形成量更大,骨缺损修复能力优于B组。C组骨缺损区无骨性连接,骨缺损未能修复。结论:BMSCs作为骨组织工程种子细胞参与成骨,HIF-1α基因促进BMSCs诱导成骨、成血管,增强新生骨组织的形成,更有效地修复骨缺损,Nano-HA具有良好的骨传导性,HIF-1α-eGFP/BMSCs/Nano-HA复合人工骨具有良好的骨缺损修复能力,具备成为一种理想骨缺损修复材料的可能。  相似文献   
29.
30.
[目的]研究多孔钽铌(Ta-Nb)材料的细胞相容性。[方法]将兔成骨细胞与多孔钽铌材料共培养,采用CCK-8法检测细胞增殖、扫描电镜观察细胞在材料上的黏附、RT-PCR检测Ⅰ型胶原和骨钙素基因的表达。[结果]CCK-8检测显示实验组多孔钽铌材料上细胞的增殖与空白对照组没有差异性(P﹥0.05);扫描电镜观察到细胞在多孔钽铌的表面和孔隙内大量黏附、增殖和生长,随着共培养时间的增加,材料表面的细胞数量明显增多;RT-PCR显示随着共培养时间的增加,Ⅰ型胶原基因的表达增强(P﹤0.05),骨钙素的表达无明显差异(P﹥0.05)。[结论]多孔钽铌支架材料适于成骨细胞的黏附、生长和分化,具有良好的细胞相容性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号