首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1455219篇
  免费   120962篇
  国内免费   6972篇
耳鼻咽喉   18838篇
儿科学   46955篇
妇产科学   41496篇
基础医学   205473篇
口腔科学   38389篇
临床医学   131988篇
内科学   289631篇
皮肤病学   33704篇
神经病学   119089篇
特种医学   55816篇
外国民族医学   486篇
外科学   215824篇
综合类   43150篇
现状与发展   9篇
一般理论   493篇
预防医学   113317篇
眼科学   32855篇
药学   104008篇
  62篇
中国医学   6915篇
肿瘤学   84655篇
  2021年   13771篇
  2019年   13445篇
  2018年   18482篇
  2017年   14425篇
  2016年   15993篇
  2015年   18595篇
  2014年   25775篇
  2013年   36465篇
  2012年   50037篇
  2011年   52694篇
  2010年   31543篇
  2009年   29752篇
  2008年   47264篇
  2007年   49679篇
  2006年   49984篇
  2005年   48201篇
  2004年   45228篇
  2003年   42993篇
  2002年   41230篇
  2001年   73763篇
  2000年   75188篇
  1999年   62265篇
  1998年   17409篇
  1997年   15849篇
  1996年   15938篇
  1995年   15083篇
  1994年   13657篇
  1993年   12731篇
  1992年   45982篇
  1991年   43602篇
  1990年   41587篇
  1989年   39623篇
  1988年   36225篇
  1987年   35405篇
  1986年   32905篇
  1985年   31310篇
  1984年   23825篇
  1983年   19993篇
  1982年   12172篇
  1981年   10738篇
  1979年   20667篇
  1978年   14559篇
  1977年   12037篇
  1976年   11316篇
  1975年   11587篇
  1974年   13968篇
  1973年   13516篇
  1972年   12625篇
  1971年   11460篇
  1970年   10897篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
81.
82.
83.
BACKGROUND AND PURPOSE:Accurate and reliable detection of white matter hyperintensities and their volume quantification can provide valuable clinical information to assess neurologic disease progression. In this work, a stacked generalization ensemble of orthogonal 3D convolutional neural networks, StackGen-Net, is explored for improving automated detection of white matter hyperintensities in 3D T2-FLAIR images.MATERIALS AND METHODS:Individual convolutional neural networks in StackGen-Net were trained on 2.5D patches from orthogonal reformatting of 3D-FLAIR (n = 21) to yield white matter hyperintensity posteriors. A meta convolutional neural network was trained to learn the functional mapping from orthogonal white matter hyperintensity posteriors to the final white matter hyperintensity prediction. The impact of training data and architecture choices on white matter hyperintensity segmentation performance was systematically evaluated on a test cohort (n = 9). The segmentation performance of StackGen-Net was compared with state-of-the-art convolutional neural network techniques on an independent test cohort from the Alzheimer’s Disease Neuroimaging Initiative-3 (n = 20).RESULTS:StackGen-Net outperformed individual convolutional neural networks in the ensemble and their combination using averaging or majority voting. In a comparison with state-of-the-art white matter hyperintensity segmentation techniques, StackGen-Net achieved a significantly higher Dice score (0.76 [SD, 0.08], F1-lesion (0.74 [SD, 0.13]), and area under precision-recall curve (0.84 [SD, 0.09]), and the lowest absolute volume difference (13.3% [SD, 9.1%]). StackGen-Net performance in Dice scores (median = 0.74) did not significantly differ (P = .22) from interobserver (median = 0.73) variability between 2 experienced neuroradiologists. We found no significant difference (P = .15) in white matter hyperintensity lesion volumes from StackGen-Net predictions and ground truth annotations.CONCLUSIONS:A stacked generalization of convolutional neural networks, utilizing multiplanar lesion information using 2.5D spatial context, greatly improved the segmentation performance of StackGen-Net compared with traditional ensemble techniques and some state-of-the-art deep learning models for 3D-FLAIR.

White matter hyperintensities (WMHs) correspond to pathologic features of axonal degeneration, demyelination, and gliosis observed within cerebral white matter.1 Clinically, the extent of WMHs in the brain has been associated with cognitive impairment, Alzheimer’s disease and vascular dementia, and increased risk of stroke.2,3 The detection and quantification of WMH volumes to monitor lesion burden evolution and its correlation with clinical outcomes have been of interest in clinical research.4,5 Although the extent of WMHs can be visually scored,6 the categoric nature of such scoring systems makes quantitative evaluation of disease progression difficult. Manually segmenting WMHs is tedious, prone to inter- and intraobserver variability, and is, in most cases, impractical. Thus, there is an increased interest in developing fast, accurate, and reliable computer-aided automated techniques for WMH segmentation.Convolutional neural network (CNN)-based approaches have been successful in several semantic segmentation tasks in medical imaging.7 Recent works have proposed using deep learning–based methods for segmenting WMHs using 2D-FLAIR images.8-11 More recently, a WMH segmentation challenge12 was also organized (http://wmh.isi.uu.nl/) to facilitate comparison of automated segmentation of WMHs of presumed vascular origin in 2D multislice T2-FLAIR images. Architectures that used an ensemble of separately trained CNNs showed promising results in this challenge, with 3 of the top 5 winners using ensemble-based techniques.12Conventional 2D-FLAIR images are typically acquired with thick slices (3–4 mm) and possible slice gaps. Partial volume effects from a thick slice are likely to affect the detection of smaller lesions, both in-plane and out-of-plane. 3D-FLAIR images, with isotropic resolution, have been shown to achieve higher resolution and contrast-to-noise ratio13 and have shown promising results in MS lesion detection using 3D CNNs.14 Additionally, the isotropic resolution enables viewing and evaluation of the images in multiple planes. This multiplanar reformatting of 3D-FLAIR without the use of interpolating kernels is only possible due to the isotropic nature of the acquisition. Network architectures that use information from the 3 orthogonal views have been explored in recent works for CNN-based segmentation of 3D MR imaging data.15 The use of data from multiple planes allows more spatial context during training without the computational burden associated with full 3D training.16 The use of 3 orthogonal views simultaneously mirrors how humans approach this segmentation task.Ensembles of CNNs have been shown to average away the variances in the solution and the choice of model- and configuration-specific behaviors of CNNs.17 Traditionally, the solutions from these separately trained CNNs are combined by averaging or using a majority consensus. In this work, we propose the use of a stacked generalization framework (StackGen-Net) for combining multiplanar lesion information from 3D CNN ensembles to improve the detection of WMH lesions in 3D-FLAIR. A stacked generalization18 framework learns to combine solutions from individual CNNs in the ensemble. We systematically evaluated the performance of this framework and compared it with traditional ensemble techniques, such as averaging or majority voting, and state-of-the-art deep learning techniques.  相似文献   
84.
85.
简要介绍了GE宝石能谱CT(Discovery CT750 HD)的技术特点,详细阐述了日常使用中出现的间歇性停机、无法进行Fastcal(快速空气校正)以及扫描中断和gantry(扫描架)自动复位3例故障的维修过程,为医院维修人员维修类似故障提供了参考。最后总结了医疗设备常见故障及主要故障原因,提出了快速排查CT故障的方法,并建议在日常使用中及时保养维护以降低设备故障率。  相似文献   
86.
87.
88.
Three‐dimensional (3D) printing technology, virtual reality, and augmented reality technology have been used to help surgeons to complete complex total hip arthroplasty, while their respective shortcomings limit their further application. With the development of technology, mixed reality (MR) technology has been applied to improve the success rate of complicated hip arthroplasty because of its unique advantages. We presented a case of a 59‐year‐old man with an intertrochanteric fracture in the left femur, who had received a prior left hip fusion. After admission to our hospital, a left total hip arthroplasty was performed on the patient using a combination of MR technology and 3D printing technology. Before surgery, 3D reconstruction of a certain bony landmark exposed in the surgical area was first performed. Then a veneer part was designed according to the bony landmark and connected to a reference registration landmark outside the body through a connecting rod. After that, the series of parts were made into a holistic reference registration instrument using 3D printing technology, and the patient's data for bone and surrounding tissue, along with digital 3D information of the reference registration instrument, were imported into the head‐mounted display (HMD). During the operation, the disinfected reference registration instrument was installed on the selected bony landmark, and then the automatic real‐time registration was realized by HMD through recognizing the registration landmark on the reference registration instrument, whereby the patient's virtual bone and other anatomical structures were quickly and accurately superimposed on the real body of the patient. To the best of our knowledge, this is the first report to use MR combined with 3D printing technology in total hip arthroplasty.  相似文献   
89.
90.

Purpose

Chest wall pain is an uncommon but bothersome late complication following lung stereotactic body radiation therapy. Despite numerous studies investigating predictors of chest wall pain, no clear consensus has been established for a chest wall constraint. The aim of our study was to investigate factors related to chest wall pain in a homogeneous group of patients treated at our institution.

Patients and methods

All 122 patients were treated with the same stereotactic body radiation therapy regimen of 48 Gy in three fractions, seen for at least 6 months of follow-up, and planned with heterogeneity correction. Chest wall pain was scored according to the Common Terminology Criteria for Adverse Events classification v3.0. Patient (age, sex, diabetes, osteoporosis), tumour (planning target volume, volume of the overlapping region between planning target volume and chest wall) and chest wall dosimetric parameters (volumes receiving at least 30, 40, and 50 Gy, the minimal doses received by the highest irradiated 1, 2, and 5 cm3, and maximum dose) were collected. The correlation between chest wall pain (grade 2 or higher) and the different parameters was evaluated using univariate and multivariate logistic regression.

Results

Median follow-up was 18 months (range: 6–56 months). Twelve patients out of 122 developed chest wall pain of any grade (seven with grade 1, three with grade 2 and two with grade 3 pain). In univariate analysis, only the volume receiving 30 Gy or more (P = 0.034) and the volume of the overlapping region between the planning target volume and chest wall (P = 0.038) significantly predicted chest wall pain, but these variables were later proved non-significant in multivariate regression.

Conclusion

Our analysis could not find any correlation between the studied parameters and chest wall pain. Considering our present study and the wide range of differing results from the literature, a reasonable conclusion is that a constraint for chest wall pain is yet to be defined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号