首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Lipoxin A4 can alleviate cerebral ischemia/reperfusion injury by reducing the inflammatory reaction,but it is currently unclear whether it has a protective effect on diabetes mellitus complicated by focal cerebral ischemia/reperfusion injury.In this study,we established rat models of diabetes mellitus using an intraperitoneal injection of streptozotocin.We then induced focal cerebral ischemia/reperfusion injury by occlusion of the middle cerebral artery for 2 hours and reperfusion for 24 hours.After administration of lipoxin A4 via the lateral ventricle,infarction volume was reduced,the expression levels of pro-inflammatory factors tumor necrosis factor alpha and nuclear factor-kappa B in the cerebral cortex were decreased,and neurological functioning was improved.These findings suggest that lipoxin A4 has strong neuroprotective effects in diabetes mellitus complicated by focal cerebral ischemia/reperfusion injury and that the underlying mechanism is related to the anti-inflammatory action of lipoxin A4.  相似文献   

2.
《中国神经再生研究》2016,(9):1431-1437
13-Methyltetradecanoic acid can stabilize cell membrane and have anti-inlfammatory, antioxidant and anti-apoptotic effects. Previous studies mainly focused on peripheral nerve injury, but seldom on the central nervous system. We investigated whether these properties of 13-methyltetradecanoic acid have a neuroprotective effect on focal cerebral ischemia/reperfusion injury, and detected the expression of basic ifbroblast growth factor and vascular endothelial growth factor. This study established rat models of middle cerebral artery occlusion/reperfusion injury by ischemia for 2 hours and reperfusion for 24 hours. At the beginning of reperfusion, 13-methyltetradecanoic acid 10, 40 or 80 mg/kg was injected into the tail vein. Results found that various doses of 13-methyltetradecanoic acid effectively reduced infarct volume, mitigate cerebral edema, and increased the mRNA and protein expression of basic ifbroblast growth factor and vascular endothe-lial growth factor at 24 hours of reperfusion. The effect was most signiifcant in the 13-methyltetradecanoic acid 40 and 80 mg/kg groups. The ifndings suggest that 13-methyltetradecanoic acid can relieve focal ischemia/reperfusion injury immediately after reperfusion, stimu-late the upregulation of basic ifbroblast growth factor and vascular endothelial growth factor to exert neuroprotective effects.  相似文献   

3.
Myocardial ischemia/reperfusion injury can lead to severe brain injury. Glycogen synthase kinase 3 beta is known to be involved in myo-cardial ischemia/reperfusion injury and diabetes mellitus. However, the precise role of glycogen synthase kinase 3 beta in myocardial ischemia/reperfusion injury-induced brain injury is unclear. In this study, we observed the effects of glycogen synthase kinase 3 beta on brain injury induced by myocardial ischemia/reperfusion injury in diabetic rats. Rat models of diabetes mellitus were generated via intraperitoneal injection of streptozotocin. Models of myocardial ischemia/reperfusion injury were generated by occluding the anterior descending branch of the left coronary artery. Post-conditioning comprised three cycles of ischemia/reperfusion. Immunohistochemical staining and western blot assays demonstrated that after 48 hours of reperfusion, the structure of the brain was seriously damaged in the experimental rats compared with normal controls. Expression of Bax, interleukin-6, interleukin-8, terminal deoxynucleotidyl transferase dUTP nick end labeling, and cleaved caspase-3 in the brain was significantly increased, while expression of Bcl-2, interleukin-10, and phospho-glycogen synthase kinase 3 beta was decreased. Diabetes mellitus can aggravate inflammatory reactions and apoptosis. Ischemic post-conditioning with glycogen synthase kinase 3 beta inhibitor lithium chloride can effectively reverse these changes. Our results showed that myocardial ischemic post-conditioning attenuated myocardial ischemia/reperfusion injury-induced brain injury by activating glyco-gen synthase kinase 3 beta. According to these results, glycogen synthase kinase 3 beta appears to be an important factor in brain injury induced by myocardial ischemia/reperfusion injury.  相似文献   

4.
BACKGROUND: The integrity of the blood brain barrier (BBB) plays an important role in the patho-physiological process of cerebral ischemia/reperfusion injury. It has been recently observed that metalloproteinase-9 (MMP-9) is closely related to cerebral ischemia/reperfusion injuryOBJECTIVE: This study was designed to observe MMP-9 expression in the rat brain after cerebral ischemia/reperfusion injury and to investigate its correlation to BBB permeability.DESIGN, TIME AND SETTING: This study, a randomized controlled animal experiment, was performed at the Institute of Neurobiology, Central South University between September 2005 and March 2006.MATERIALS: Ninety healthy male SD rats, aged 3-4 months, weighing 200-280g, were used in the present study. Rabbit anti-rat MMP-9 polyclonal antibody (Boster, Wuhan, China) and Evans blue (Sigma, USA) were also used.METHODS: All rats were randomly divided into 9 groups with 10 rats in each group: normal control group, sham-operated group, and ischemia for 2 hours followed by reperfusion for 3,6,12 hours, 1,2,4 and 7 days groups. In the ischemia/reperfusion groups, rats were subjected to ischemia/reperfusion injury by suture occlusion of the right middle cerebral artery. In the sham-operated group, rats were merely subjected to vessel dissociation. In the normal control group, rats were not modeled.MAIN OUTCOME MEASURES: BBB permeability was assessed by determining the level of effusion of Evans blue. MMP-9 expression was detected by an immunohistochemical method.RESULTS: All 90 rats were included in the final analysis. BBB permeability alteration was closely correlated to ischemia/reperfusion time. BBB permeability began to increase at ischemia/reperfusion for 3 hours, then it gradually reached a peak level at ischemia/reperfusion for 1 day, and thereafter it gradually decreased. MMP-9 expression began to increase at ischemia/reperfusion for 3 hours, then gradually reached its peak level 2 days after perfusion, and thereafter it gradually decreased.CONCLUSION: MMP-9 expression increases in rat brain tissue after focal cerebral ischemia/reperfusion injury, which correlates with increased permeability of the BBB.  相似文献   

5.
In this study, we hypothesized that total flavonoid of Litsea coreana leve (TFLC) protects against focal cerebral ischemia/reperfusion injury. TFLC (25, 50, 100 mg/kg) was administered orally to a rat model of focal ischemia/reperfusion injury, while the free radical scavenging agent, edaravone, was used as a positive control drug. Results of neurological deficit scoring, 2,3,5-triphenyl tetrazolium chloride staining, hematoxylin-eosin staining and biochemical tests showed that TFLC at different doses significantly alleviated cerebral ischemia-induced neurological deficits and histopathological changes, and reduced infarct volume. Moreover, it suppressed the increase in the levels of nitrates plus nitrites, malondialdehyde and lactate dehydrogenase, and it diminished the reduction in glu- tathione, superoxide dismutase and catalase activities induced by cerebral ischemia/reperfusion injury. Compared with edaravone, the protective effects of TFLC at low and medium doses (25, 50 mg/kg) against cerebral ischemia/reperfusion injury were weaker, while the protective effects at high dose (100 mg/kg) were similar. Our experimental findings suggest that TFLC exerts neuroprotective effects against focal cerebral ischemia/reperfusion injury in rats, and that the effects may be asso- ciated with its antioxidant activities.  相似文献   

6.
Puerarin, a traditional Chinese medicine, exerts a powerful neuroprotective effect in cerebral ischemia/reperfusion injury, but its mechanism is unknown. Here, we established rat models of middle cerebral artery ischemia/reperfusion injury using the suture method. Puerarin(100 mg/kg) was administered intraperitoneally 30 minutes before middle cerebral artery occlusion and 8 hours after reperfusion. Twenty-four hours after reperfusion, we found that puerarin significantly improved neurological deficit, reduced infarct size and brain water content, and notably diminished the expression of Toll-like receptor-4, myeloid differentiation factor 88, nuclear factor kappa B and tumor necrosis factor-α in the ischemic region. These data indicate that puerarin exerts an anti-inflammatory protective effect on brain tissue with ischemia/reperfusion damage by downregulating the expression of multiple inflammatory factors.  相似文献   

7.
Previous studies addressing the protection of tea polyphenols against cerebral ischemia/ reperfusion injury often use focal cerebral ischemia models, and the optimal dose is not unified. In this experiment, a cerebral ischemia/reperfusion injury rat model was established using a modified four-vessel occlusion method. Rats were treated with different doses of tea polyphenols (25, 50, 100, 150, 200 mg/kg) via intraperitoneal injection. Results showed that after 2, 6, 12, 24, 48 and 72 hours of reperfusion, peroxide dismutase activity and total antioxidant capacity in brain tissue gradually increased, while malondialdehyde content gradually decreased after tea polyphenol intervention. Tea polyphenols at 200 mg/kg resulted in the most apparent changes. Terminal deoxynucleotidyl transferase-mediated nick end labeling and flow cytometry showed that 200 mg/kg tea polyphenols significantly reduced the number and percentage of apoptotic cells in the hippocampal CA1 region of rats after cerebral ischemia/reperfusion injury. The open field test and elevated plus maze experiments showed that tea polyphenols at 200 mg/kg strengthened exploratory behavior and reduced anxiety of cerebral ischemia/reperfusion injured rats. Experimental findings indicate that tea polyphenols protected rats against cerebral ischemia/ reperfusion injury and 200 mg/kg is regarded as the optimal dose.  相似文献   

8.
Excess activation and expression of large-conductance Ca2+-activated K+ channels (BKCa channels) may be an important mechanism for delayed neuronal death after cerebral ischemia/reperfusion injury. Electroacupuncture can regulate BKCa channels after cerebral ischemia/reperfusion injury, but the precise mechanism remains unclear. In this study, we established a rat model of cerebral ischemia/reperfusion injury. Model rats received electroacupuncture of 1 mA and 2 Hz atShuigou (GV26) for 10 minutes, once every 12 hours for a total of six times in 72 hours. We found that in cerebral ischemia/reperfusion injury rats, ischemic changes in the cerebral cortex were mitigated after electroacupuncture. Moreover, BKCa channel protein and mRNA expression were reduced in the cerebral cortex and neurological function noticeably improved. These changes did not occur after electroacupuncture at a non-acupoint (5 mm lateral to the left side of Shuigou). Thus, our ifndings indicate that electroacupuncture atShuigou improves neurological function in rats following cerebral ischemia/reperfu-sion injury, and may be associated with down-regulation of BKCa channel protein and mRNA expression. Additionally, our results suggest that theShuigou acupoint has functional speciifcity.  相似文献   

9.
10.
11.
厄贝沙坦对大鼠局灶性脑缺血再灌注后炎症反应的影响   总被引:1,自引:0,他引:1  
目的观察厄贝沙坦对大鼠局灶性脑缺血再灌注后脑内及外周炎症反应的影响。方法采用改良Longa方法制备大鼠大脑中动脉阻塞(middle cerebralartery occlusion,MCAO)模型,于缺血90min再灌注后24h和72h进行梗死体积的测量,采用免疫组化和ELISA方法测量脑内和外周血的粘附分子。结果厄贝沙坦可以显著减少局灶性脑缺血再灌注后24h和72h的梗死体积(均P<0.01),改善神经功能(均P<0.01);降低脑内ICAM-1、VCAM-1的表达及其外周血浆中可溶性的形式sICAM-1、sVCAM-1蛋白的水平(均P<0.05)。结论厄贝沙坦可以降低粘附分子的表达,减少梗死体积,改善神经功能,对脑缺血再灌注起保护作用。  相似文献   

12.
BACKGROUND: Cerebral ischemia/reperfusion injury has been shown to induce inflammatory reactions, including white blood cell activation and adhesion molecule expression. These reactions often lead to aggravated neuronal injury. OBJECTIVE: To observe corticocerebral pathology, as well as ultrastructural changes, in a rat model of focal cerebral ischemia/reperfusion injury through optical and electron microscopy, and to investigate interventional effects of "Xingnao Kaiqiao" acupuncture (a brain-activating and orifice-opening acupuncture method). DESIGN, TIME AND SETTING: A randomized, controlled, neuropathology, animal experiment was performed at the Laboratory of Molecular Biology, First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine between April and June 2004. MATERIALS: A total of 50 healthy, male, Wistar rats were randomized into 5 groups, with 10 rats per group: control, sham-operated, model, non-acupoint, and "Xingnao Kaiqiao ". Transmission electron microscope (TEM 400ST) was provided by Philips, Netherlands. Electro-acupuncture treatment apparatus (KWD-8082) was provided by Changzhou Wujin Great Wall Medical Instrument, China. METHODS: Focal cerebral ischemia/reperfusion injury was induced by occlusion of the middle cerebral artery in the model, non-acupoint, and "Xingnao Kaiqiao" groups. Rats from the control group did not undergo any treatment. The sham-operated group received identical experimental procedures as the model group, except that the nylon suture was not inserted into the right internal carotid artery. At 1, 3, 6, and 12 hours following focal cerebral ischemia/reperfusion injury induction, rats from the Xingnao Kaiqiao group underwent 1-minute acupuncture at the bilateral "Neiguan" (PC 6) acupoint, using a reducing method of lifting-thrusting and twirling-rotating. Subsequently, the rats were subjected to acupuncture at the "Renzhong" (DU26) acupoint 10 times by a heavy bird-pecking method. The non-acupoint group  相似文献   

13.
VEGF治疗脑缺血再灌注损伤的分子机制研究   总被引:2,自引:0,他引:2  
目的 通过检测血管内皮生长因子(VEGF)治疗兔脑缺血再灌注损伤的有关分子表达情况,探讨其分子机制.方法 采用兔大脑中动脉阻塞(MCAO)2h再灌注72h模型,在再灌注即刻,应用微量进样器将VEGF立体定向导入梗死灶周,于再灌注72h断头取脑,应用免疫组化方法检测缺血半暗带区caspase-3和细胞外信号调节激酶1(estracellular signal-regulated kinase,ERK1)的表达情况.结果 VEGF治疗后缺血半暗带区caspase-3和ERK1表达明显减低.结论 VEGF可能通过抑制caspase-3和ERK1表达发挥治疗作用.  相似文献   

14.
目的研究丁苯酞预处理对大鼠局灶性脑缺血再灌注损伤的神经保护作用。方法健康成年SD雄性大鼠48只,随机分为假手术组、缺血再灌注组、丁苯酞预处理组,每组各16只。各组均灌胃5d后,采用线栓法制作大鼠局灶性脑缺血再灌注(MCAO)模型,缺血2h、再灌注24h,进行神经功能缺损评分,TTC染色及图像分析观察脑梗死体积,免疫组化法检测脑组织caspase-3、bcl-2表达的变化。结果与缺血再灌注组相比,丁苯酞预处理组神经缺损程度改善,梗死灶体积减少,caspase-3阳性细胞数量减少,bcl-2表达上调。结论丁苯酞可减轻缺血性脑血管病的发作,具有一定的神经保护作用。  相似文献   

15.
目的研究尼莫地平和超氧化物歧化酶(superoxide dismutase,SOD)联合治疗大鼠脑缺血/再灌注损伤的神经保护作用。方法将45只成年雄性Wistar大鼠随机分成4组,尼莫地平组、超氧化物歧化酶组、联合药物(尼莫地平加超氧化物歧化酶)组和对照组。应用线栓法制作大鼠MCAO模型,缺血后4h行再灌注。于再灌注前20min、再灌注后12h和36h尾静脉给药;48h后计算大鼠存活率、行神经功能缺损评分、脑血流量和脑梗死体积测定。结果①大鼠存活率分别为:41.7%、27.3%、70.0%和25.0%。联合药物组较对照组的存活率明显增加(P<0.05)。②神经功能缺损评分为:4.39±0.197、4.47±0.492、3.79±0.521和4.67±0.709。联合药物组较对照组的神经功能缺损明显减少(P<0.01),较尼莫地平或SOD组也明显减少(P<0.05)。③脑组织血流量为:96±23%、81±19%、129±47%和79±41%。与对照组相比三个药物组的脑血流量均增加(P<0.05)。联合药物组的脑血流量增加又明显高于单药治疗组(P<0.05)。④梗死体积为:261.0±55.2、261.2±59.3、128.5±58.4和383.5±58.8mm3。联合药物组梗死体积明显小于对照组(P<0.05)和两个单药组(P<0.01,P<0.05)。结论尼莫地平和超氧化物歧化酶联合用药对脑缺血/再灌注损伤具有神经保护作用,并且优于单一药物治疗。  相似文献   

16.
Rat models of focal cerebral ischemia/reperfusion injury were established by occlusion of the middle cerebral artery.Microarray analysis showed that 24 hours after cerebral ischemia,there were nine up-regulated and 27 down-regulated microRNA genes in cortical tissue.Bioinformatic analysis showed that bcl-2 was the target gene of microRNA-384-5p and microRNA-494,and caspase-3 was the target gene of microRNA-129,microRNA-320 and microRNA-326.Real-time PCR and western blot analyses showed that 24 hours after cerebral ischemia,bcl-2 mRNA and protein levels in brain tissue were significantly decreased,while caspase-3 mRNA and protein levels were significantly increased.This suggests that following cerebral ischemia,differentially expressed microRNA-384-5p,microRNA-494,microRNA-320,microRNA-129 and microRNA-326 can regulate bcl-2 and caspase-3 expression in brain tissue.  相似文献   

17.
目的研究槲皮素-3-半乳糖苷(金丝桃苷)对缺血性脑血管病的神经保护作用。方法78只Wistar大鼠随机分为假手术组、缺血对照组、金丝桃苷缺血组(Hyp组),后2组又根据观察时间点不同分为脑缺血2h后再灌注,3h、6h、12h、48h六个亚组,每组各6只,线栓法建立大鼠缺血再灌注模型。SABC免疫组化染色法分别记录各组不同时间点的P-选择素和E-选择素阳性反应血管数。结果自3h起同时间点金丝桃苷苷组P-选择素、E-选择素水平均显著低于对照组(P<0.05)。结论金丝桃苷能有效抑制大鼠缺血/再灌注早期P、E-选择素的表达,有显著脑保护作用。  相似文献   

18.
P K Yip  Y Y He  C Y Hsu  N Garg  P Marangos  E L Hogan 《Neurology》1991,41(6):899-905
Although hyperglycemia has been shown to consistently exacerbate ischemia brain injury following global or diffuse cerebral ischemia, the effect of hyperglycemia in unilateral focal cerebral ischemia remains controversial. Recent advances in thrombolytic therapy have enhanced the clinical significance of postischemic reperfusion. We studied the effect of plasma glucose on ischemic brain injury in a newly developed focal cerebral ischemia-reperfusion model. Rats allowed free access to food until ischemic insult developed intra- and postischemic hyperglycemia and cortical infarction. Rats fasted for 24 hours had blunted hyperglycemic responses. Infarct volumes were correspondingly smaller. The protective effect of fasting was partially abolished by glucose loading during ischemia to induce intra-ischemic hyperglycemia. Glucose loading immediately or 3 hours after focal cerebral ischemia did not significantly alter the protective effect of fasting. Insulin treatment in fed rats before ischemia also reduced hyperglycemic responses and infarct volume. Timing of insulin treatment was also critical in the reduction of ischemic injury. These findings indicate that plasma glucose during the period of ischemia is an important determinant of brain injury in focal cerebral ischemia-reperfusion and there is a therapeutic window for normalization of plasma glucose to be efficacious.  相似文献   

19.
Oxysophoridine, a new alkaloid extracted from Sophora alopecuroides L., has been shown to have a protective effect against ischemic brain damage. In this study, a focal cerebral ischemia/reperfusion injury model was established using middle cerebral artery occlusion in mice. Both 62.5, 125, and 250 mg/kg oxysophoridine, via intraperitoneal injection, and 6 mg/kg nimodipine, via intragastric administration, were administered daily for 7 days before modeling. After 24 hours of reperfusion, mice were tested for neurological deficit, cerebral infarct size was assessed and brain tissue was collected. Results showed that oxysophoridine at 125, 250 mg/kg and 6 mg/kg nimodipine could reduce neurological deficit scores, cerebral infarct size and brain water content in mice. These results provided evidence that oxysophoridine plays a protective role in cerebral ischemia/reperfusion injury. In addition, oxysophoridine at 62.5, 125, and 250 mg/kg and 6 mg/kg nimodipine increased adenosine-triphosphate content, and decreased malondialdehyde and nitric oxide content. These compounds enhanced the activities of glutathione-peroxidase, superoxide dismutase, catalase, and lactate dehydrogenase, and decreased the activity of nitric oxide synthase. Protein and mRNA expression levels of N-methyl-D-aspartate receptor subunit NR1 were markedly inhibited in the presence of 250 mg/kg oxysophoridine and 6 mg/kg nimodipine. Our experimental findings indicated that oxysophoridine has a neuroprotective effect against cerebral ischemia/reperfusion injury in mice, and that the effect may be due to its ability to inhibit oxidative stress and expression of the N-methyl-D-aspartate receptor subunit NR1.  相似文献   

20.
目的 探讨应用G-CSF动员自体骨髓干细胞对大鼠脑缺血/再灌注损伤及细胞凋亡的影响。方法 应用线栓法制备大鼠局灶性大脑中动脉栓塞/再灌注(MCAO/R)模型,应用粒细胞集落刺激因子(G-GSF)刺激自体骨髓干细胞分裂增殖,并用5-溴脱氧尿核苷(Brdu)标记。观察大鼠神经病学评分,HE染色和免疫组化检测脑缺血区病理改变及CD34和Brdu阳性细胞,原位末端标记法(TUNEL法)观察细胞凋亡。结果 模型动员组大鼠脑缺血/再灌注后24h,大量炎症细胞浸润。再灌注后48h,缺血区可见CD34和Brdu阳性细胞;72h后CD34阳性细胞消失,而Brdu阳性细胞持续存在;模型未动员组缺血区无CD34和很少Brdu阳性细胞表达。48h缺血区新生毛细血管密度明显高于对照组。再灌注后24h细胞凋亡显著,1周时达高峰;与模型非动员组比较,模型动员组48h后细胞凋亡改善明显。结论 自体骨髓干细胞经G-CSF动员后可向大鼠脑缺血区趋化并可分化为神经元前体细胞,显著促进脑缺血区血管再生,降低脑神经功能评分,降低细胞凋亡率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号