首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Exo-focal postischemic neuronal death in the rat brain   总被引:15,自引:1,他引:14  
We describe delayed neuronal damage in ipsilateral areas remote from the ischemic area of rat brain after transient focal ischemia induced by embolization of the right middle cerebral artery (MCA). After 15, 30, 60 and 90 min of MCA occlusion, recirculation was achieved by removal of the embolus. Chronological changes in the distribution of the neuronal damage were determined by using the 45Ca autoradiographic technique and the histological method, and the mechanism involved was investigated by measuring local cerebral glucose metabolism. Depending on the duration of ischemia, 45Ca accumulation extended to the lateral segment of the caudate putamen and to the cerebral cortex, both supplied by the occluded MCA. Moreover, 3 days after ischemic insult, 45Ca had accumulated in the ipsilateral substantia nigra and ventral posterior nucleus of the thalamus. Histological examination revealed that the neurons in both areas suffered damage and were selectively reduced in number. Cerebral glucose utilization decreased in the thalamus, but increased approximately 30% (P less than 0.01) in the substantia nigra compared with the value in the corresponding contralateral area. Both areas lie outside the ischemic area, but have transsynaptic connections with the ischemic focus. Based on the present study, we suggest that the mechanisms of delayed neuronal death in these two remote areas may not be identical, but that this phenomenon may be caused by a transsynaptic process associated with the ischemic focus.  相似文献   

2.
We describe delayed neuronal damage in ipsilateral remote areas outside the ischemic area of rat brain after transient focal ischemia. The distribution of the neuronal damage was determined by using the 45Ca autoradiographic technique and the histological method, and we investigated the mechanism involved by measuring local cerebral glucose metabolism. Wistar rats were used throughout the experiments. Under 2% halothane anesthesia with a mixture of 70% N2O and 30% O2, the right middle cerebral artery (MCA) was embolized by insertion from the internal carotid artery of a nylon surgical thread with a cylindrical coating of silicone on the distal portion. Animals were divided into 4 groups based on duration of ischemia. After 15, 30, 60 and 90 min of MCA occlusion, recirculation was achieved by removal of the embolus. Immediately after recirculation and then after 24 hr, 3 days, 1 week and 2 weeks of recirculation, 300 microCi 45CaCl2 in aqueous solution (0.3 ml) was administered intravenously; 6 hr later, animals were decapitated to obtain autoradiograms. Histological examination was carried out according to the same protocol. In the 15-min MCA occlusion group, neither 45Ca accumulation nor histological change was observed. In the 30-min MCA occlusion group, 45Ca accumulation extended from the lateral margin to the lateral segment of the caudate-putamen and the cerebral cortex supplied by the occluded MCA depending on the duration of recirculation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We studied the postischemic alterations of second messenger and receptor systems focusing on the strionigral pathway in order to clarify the mechanism of the delayed neuronal changes in remote areas of the rat brain after transient focal ischemia. Chronological changes of [3H]forskolin and [3H]SCH 23390 binding sites and 45Ca accumulation were determined by using autoradiographic methods after 90 min of right middle cerebral artery (MCA) occlusion and after such occlusion followed by different periods of recirculation. After the ischemic insult, 45Ca accumulation extended to the lateral segment of the caudate putamen (CPu-L) and to the cerebral cortex, both supplied by the occluded MCA. After the ischemia, [3H]forskolin binding sites were found to be markedly decreased in the early stage in the CPu-L, the ischemic focus in this model, but reduction of the dopamine D-1 receptor sites was first detected there 1 day after the ischemia. On the contrary, in the exo-focal remote areas, there was no alteration of either [3H]forskolin or D-1 receptor binding sites on day 1. However, 3 days after the ischemia, marked reduction of both these binding sites was first observed in the ipsilateral substantia nigra, which had not been directly affected by the original ischemic insult. These postischemic delayed phenomena observed in the substantia nigra developed concurrently with abnormal 45Ca accumulation. These results suggest that strionigral terminal degeneration in the substantia nigra is caused by precedent ischemic damage of the ipsilateral caudate putamen and that intracellular signal transduction including both second messenger and receptor systems may be involved prior to the neuronal damage in the exo-focal postischemic brain areas.  相似文献   

4.
We studied the alteration of intracellular signal transduction using quantitative autoradiography of the second messenger system in order to clarify the mechanisms of delayed neuronal damage in the remote areas of rat brain after transient focal ischemia. Chronological changes of [3H]forskolin binding sites were measured to demonstrate the striatal-nigral pathway after 90 min of right middle cerebral artery (MCA) occlusion and after such occlusion followed by 3 h, 6 h, 1 day, 3 days, 1 week, 2 weeks and 4 weeks of recirculation. [3H]Forskolin binding sites were found to be markedly decreased in the lateral segment of the caudate putamen supplied by the occluded MCA after 90 min of ischemia with no recirculation. On the contrary, there was no alteration on day 1, but 3 days after ischemic insult, marked reduction of [3H]forskolin binding sites was observed in the ipsilateral substantial nigra which lay outside the ischemic areas. This postischemic delayed phenomenon observed in the substantia nigra developed concurrently with 45Ca accumulation, which was detected there in our previous study. The delayed reduction of [3H]forskolin binding sites in the substantia nigra observed in the present study indicates that striatonigral terminal degeneration at presynaptic sites is caused by precedent ischemic damage of the ipsilateral caudate putamen and that exo-focal postischemic neuronal death is caused by a transsynaptic process associated with the ischemic foci.  相似文献   

5.
We studied the alterations of calcium accumulation and intracellular signal transduction using autoradiography of the second messenger system in order to clarify the mechanisms of the delayed neuronal changes in the remote areas of rat brain after transient focal ischemia. Chronological changes of 45Ca accumulation and [3H]inositol 1,4,5-trisphosphate (IP3) binding sites were determined after 90 min of right middle cerebral artery (MCA) occlusion and after such occlusion followed by different periods of recirculation. After the ischemic insult, 45Ca accumulation extended to the lateral segment of the caudate putamen and to the cerebral cortex, both supplied by the occluded MCA. One day after the ischemia, [3H]IP3 binding sites decreased significantly compared with the control values in these ischemic areas. Moreover, 3 days after the ischemia, 45Ca accumulation was first detected in the ipsilateral thalamus and the substantia nigra, which lay outside the ischemic areas. In the substantia nigra, a significant decrease of [3H]IP3 binding sites and concurrent 45Ca accumulation were observed. In the thalamus, however, there was not alteration until 1 week after the ischemia, and then [3H]IP3 binding sites increased significantly 2 weeks (P less than 0.05) and 4 weeks (P less than 0.01) after the ischemia. Based on the present study, we speculate that different mechanisms associated with signal transduction systems may be responsible for exo-focal postischemic delayed neuronal changes in the thalamus and the substantia nigra. The increase of [3H]IP3 binding sites of the thalamus in the chronic stage may be new evidence of plasticity related to neurotransmission.  相似文献   

6.
We studied the alteration of intracellular signal transduction using quantitative autoradiography of the second messenger system in order to clarify the mechanisms of delayed neuronal damage in the remote areas of rat brain after transient focal ischemia. Chronological changes of [3H]forskolin binding sites were measured to demonstrate the striatal-nigral pathway after 90 min of right middle cerebral artery (MCA) occlusion and after such occlusion followed by 3 h, 6 h, 1 day, 3 days, 1 week, 2 weeks and 4 weeks of recirculation. [3H]Forskolin binding sites were found to be markedly decreased in the lateral segment of the caudate putamen supplied by the occluded MCA after 90 min of ischemia with no recirculation. On the contrary, there was no alteration on day 1, but 3 days after ischemic insult, marked reduction of [3H]forskolin binding sites was observed in the ipsilateral substantia nigra which lay outside the ischemic areas. This postischemic delayed phenomenon observed in the substantia nigra developed concurrently with 45Ca accumulation, which was detected there in our previous study. The delayed reduction of [3H]forskolin binding sites in the substantia nigra observed in the present study indicates that striatonigral terminal degeneration at presynaptic sites is caused by precedent ischemic damage of the ipsilateral caudate putamen and that exo-focal postischemic neuronal death is caused by a transsynaptic process associated with the ischemic foci.  相似文献   

7.
Summary Chronological changes of protein kinase C (PKC) activity were measured using in vitro [3H]phorbol 12,13-dibutyrate (PDBu) autoradiography to investigate the postischemic alteration of this second messenger system in the rat brain. Transient ischemia was induced by the occlusion of the middle cerebral artery (MCA) for 90 min and such occlusion followed by various recirculation periods of up to 4 weeks. After 90 min of ischemia followed by 3 hours of recirculation, [3H]PDBu binding sites were found to be significantly decreased in the cerebral cortex and lateral segment of the caudate putamen, both supplied by the occluded MCA; thereafter, the binding sites decreased progressively in those ischemic foci. On the contrary, there was no alteration on day 1, but 3 days after ischemic insult, a significant decrease of [3H]PDBu binding sites was first detected in the ipsilateral thalamus and the substantia nigra, which both areas had not been directly affected by the original ischemic insult. This postischemic delayed phenomenon observed in the thalamus and the substantia nigra developed concurrently with45Ca accumulation, which was detected there in our previous study. These results suggest that alteration of second messenger (PKC) pathways may be involved not only in the ischemic foci, but also in neuronal degeneration of the exo-focal remote areas in relation to the disruption of intracellular calcium homeostasis which plays a key role in the pathogenesis of postischemic neuronal damage and that marked alteration of intracellular signal transduction may precede the neuronal damage in the exo-focal postischemic brain areas.  相似文献   

8.
The glutamate antagonist MK-801 reduces focal ischemic brain damage in the rat   总被引:22,自引:0,他引:22  
Excessive activation of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor has been implicated in the sequence of neurochemical events that results in irreversible neuronal damage in cerebral ischemia. The effects of the NMDA antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801) upon the amount of ischemic brain damage has been assessed quantitatively in the lightly anesthetized rat. Focal cerebral ischemia was produced by the permanent occlusion of one middle cerebral artery (MCA), and the animals were killed 3 hours after the arterial occlusion. MK-801 (0.5 mg/kg) was administered intravenously either 30 minutes prior to MCA occlusion or 30 minutes after the induction of ischemia. Pretreatment with MK-801 reduced the volume of ischemic damage both in the cerebral cortex (by 38% compared with untreated rats with MCA occlusion; p less than 0.01) and in the caudate nucleus (by 18% compared with controls; p less than 0.05). Treatment with MK-801, initiated 30 minutes after MCA occlusion, reduced the volume of ischemic damage in the cerebral cortex (by 52% compared with controls; p less than 0.01). The volume of ischemic damage in the caudate nucleus was minimally influenced by MK-801 treatment initiated after MCA occlusion. The antiischemic effects of MK-801 were readily demonstrable despite the hypotension that MK-801 induced in rats anesthetized with halothane (0.5%), nitrous oxide (70%), and oxygen (30%). The potency of MK-801 in reducing ischemic brain damage, even when administered after the induction of ischemia, highlights the potential use of NMDA receptor antagonists for the treatment of focal cerebral ischemia in humans.  相似文献   

9.
Summary Male Fisher rats (n=61) underwent permanent focal cerebral ischemia induced by left middle cerebral artery (MCA) occlusion, in conjunction with ipsilateral common carotid artery ligation. The experiments were terminated at time points ranging from immediately following occlusion to 30 days post MCA occlusion. A coronal histological section, in close proximity to the site of the arterial occlusion, was taken from each brain and divided into six areas encompassing the affected cortex and caudate putamen. Each area was analyzed for ischemic damage according to a grading scale that reflects changes in neuronal morphology. Differential neuronal counts were also made on a 0.5-mm2 field in each of the six areas. The areas closest to the occluded vessel showed accelerated ischemic damage between 8 and 12 h after occlusion, leaving open the possibility that before 8 h, therapeutic intervention may be effective. After 12 h, changes in these areas progressed to complete necrosis and eventual cavitation with a complete loss of neurons after 10 days. The areas more peripheral to the occluded vessel exhibited mild ischemic damage, with an apparent reversal of damage grading at later time points and no loss of neurons. This reversal of ischemic damage in the peripheral areas is suggestive of a histological equivalent of the penumbra.Supported by NIH Grants NS23393 and NS29463  相似文献   

10.
We investigated progression and recovery of neuronal damage during and after global cerebral ischemia in gerbils after bilateral occlusion of the common carotid arteries, using the immunohistochemical method (reaction for tubulin and creatine kinase BB-isoenzyme). The earliest, but reversible, ischemic lesions occurred after 3 minutes' ischemia in the subiculum-CA1 and CA2 regions of the hippocampus. The lesions became irreversible after 4 minutes' ischemia. The ischemic and postischemic lesions in the cerebral cortex, thalamus, and caudoputamen were partially or completely reversible if the ischemic period was 5 minutes, whereas delayed degeneration occurred in the pyramidal cells of the medial CA1 region after reperfusion for 48 hours (delayed neuronal death). After 10 minutes' ischemia and subsequent reperfusion, delayed neuronal death extended from the medial to the lateral CA1 region; the ischemic and postischemic lesions in the cerebral cortex, thalamus, and caudoputamen also expanded during reperfusion. Our investigation demonstrates that selective vulnerability existed in global cerebral ischemia as in incomplete or regional ischemia and suggests that neurons in many areas of the brain possessed the potential for recovery, progressive deterioration, and even delayed neuronal death depending on the severity and duration of cerebral ischemia.  相似文献   

11.
Otsuka R  Adachi N  Hamami G  Liu K  Yorozuya T  Arai T 《Brain research》2003,974(1-2):117-126
Blockade of central H(2) receptors aggravates ischemic neuronal damage. Since changes in the activity of the monoaminergic system are contributing factors in the development of ischemic neuronal damage, the authors evaluated the effects of ranitidine on the monoaminergic system and ischemic neuronal damage in the middle cerebral artery (MCA) occlusion model of rats. Wistar rats pretreated with saline or ranitidine (3 and 30 nmol, i.c.v.) were subjected to reversible occlusion of MCA for 2 h. The total infarct volume was determined 24 h after reperfusion. The relationship between dopaminergic activity and the histologic outcome was estimated by lesioning the substantia nigra 2 days before MCA occlusion. In a second experiment, the animals were subjected to 15 min of MCA occlusion, and the effects of ranitidine on the histologic outcome was evaluated 7 days after ischemia. In a third experiment, the tissue concentrations of monoamines and their metabolites were determined in the cerebral cortex and striatum 2 h after reperfusion following MCA occlusion for 2 h. The turnover of norepinephrine and dopamine was compared between animals treated with saline and those treated with ranitidine by estimating the alpha-methyl-p-tyrosine-induced depletion of norepinephrine and dopamine, respectively. The turnover of 5-hydroxytryptamine was evaluated by the probenecid-induced accumulation of 5-hydroxyindoleacetic acid. Treatments with ranitidine markedly increased the infarct volume 24 h after reperfusion. Ranitidine also aggravated delayed neuronal death 7 days after ischemia. The aggravation was abolished by the lesion of the substantia nigra before MCA occlusion. The MCA occlusion increased the turnover of cortical norepinephrine and striatal dopamine. The turnover was further facilitated by ranitidine. Although ranitidine suppressed the 5-hydroxytryptamine turnover in the cerebral cortex, the extent of this effect was similar in both the ischemic and non-ischemic sides. These results suggest that facilitation of the catecholaminergic systems is involved in the aggravation of ischemic neuronal damage by H(2) blockade.  相似文献   

12.
大鼠大脑中动脉缺血/再灌注模型中Caspase-3的表达   总被引:64,自引:4,他引:60  
目的 研究Caspase-3在缺血性脑损伤中的作用,进一步探讨缺血性脑血管病的分子机制。方法 用Belayev改良的Longa线栓法制备大鼠局灶性大脑中动脉(MCA)缺血/再灌注模型,TTC染色观察梗死灶的形成,分别用原位杂交及免疫组化技术检测鼠脑中Caspase-3 mRNA与活性蛋白的表达。结果 缺血2小时再灌注24小时,TTC染色见明显的梗死灶形成,正常脑组织、假手术组及MCAO缺血对侧脑中有少量的Caspase-3 mRNA表达,但活性蛋白几无表达;再灌注24小时后,缺血侧脑中Caspase-3 mRNA表达明显增强,蛋白质活化增多,再灌注48小时进一步增加。结论 细胞凋亡机制参与了缺血后迟发性神经元死亡,Caspase-3在其中起重要作用。  相似文献   

13.
Calbindin D-28K(CB), a Ca2+-binding protein, maintains Ca2+ homeostasis and protects neurons against various insults. Hyperthermia can exacerbate brain damage produced by ischemic insults. However, little is reported about the role of CB in the brain under hyperthermic condition during ischemic insults. We investigated the effects of transient global cerebral ischemia on CB immunoreactivity as well as neuronal damage in the hippocampal formation under hyperthermic condition using immunohistochemistry for neuronal nuclei(Neu N) and CB, and Fluoro-Jade B histofluorescence staining in gerbils. Hyperthermia(39.5 ± 0.2°C) was induced for 30 minutes before and during transient ischemia. Hyperthermic ischemia resulted in neuronal damage/death in the pyramidal layer of CA1–3 area and in the polymorphic layer of the dentate gyrus at 1, 2, 5 days after ischemia. In addition, hyperthermic ischemia significantly decreaced CB immunoreactivity in damaged or dying neurons at 1, 2, 5 days after ischemia. In brief, hyperthermic condition produced more extensive and severer neuronal damage/death, and reduced CB immunoreactivity in the hippocampus following transient global cerebral ischemia. Present findings indicate that the degree of reduced CB immunoreactivity might be related with various neuronal damage/death overtime and corresponding areas after ischemic insults.  相似文献   

14.
T Hayashi  M Sakurai  Y Itoyama  K Abe 《Brain research》1999,832(1-2):159-163
As thrombolytic therapy for treatment of ischemic stroke was propagated, much attention has been paid to reperfusion brain injury. Oxidative stress is one of the most important factors that exacerbate tissue damage by reperfusion. Thus, we investigated the extent of oxidative damage in rat brain after transient middle cerebral artery (MCA) occlusion by immunohistochemical analysis for 8-hydroxy-2'-deoxyguanosine (8-OHdG), which is one of the best markers of oxidative damage. Furthermore, in order to investigate its role in neuronal cell death, we performed terminal deoxynucleotidyl transferase-mediated dUTP-biotin in situ nick end labeling (TUNEL) study, and compared the results with that of 8-OHdG immunohistochemistry. There was no immunoreactive 8-OHdG in sham-operated brain, but it became present in neurons of MCA territory at 3 h of reperfusion after 90-min ischemia. At 48 h after reperfusion, cerebral tissue of MCA territory was severely destroyed, and many cells in that area revealed TUNEL positivity. Some neurons in MCA territory showed mild immunoreactivity for 8-OHdG at that time, but it was strongest in neurons in the outer area of MCA territory. Those cells did not show TUNEL positivity, suggesting that 8-OHdG production is not necessarily followed by early cell death. Here, it was demonstrated that oxidative DNA damage occurs in more extended area than that where cell death is recognized. Although this damage does not cause early cell death, this might result in more prolonged cell dysfunction and eventual neuronal loss. Anti-oxidant therapy might be required for treatment of stroke in the future.  相似文献   

15.
Hyperglycemia and focal brain ischemia.   总被引:6,自引:0,他引:6  
The influence of hyperglycemic ischemia on tissue damage and cerebral blood flow was studied in rats subjected to short-lasting transient middle cerebral artery (MCA) occlusion. Rats were made hyperglycemic by intravenous infusion of glucose to a blood glucose level of about 20 mmol/L, and MCA occlusion was performed with the intraluminar filament technique for 15, 30, or 60 minutes, followed by 7 days of recovery. Normoglycemic animals received saline infusion. Perfusion-fixed brains were examined microscopically, and the volumes of selective neuronal necrosis and infarctions were calculated. Cerebral blood flow was measured autoradiographically at the end of 30 minutes of MCA occlusion and after 1 hour of recirculation in normoglycemic and hyperglycemic animals. In two additional groups with 30 minutes of MCA occlusion, CO2 was added to the inhaled gases to create a similar tissue acidosis as in hyperglycemic animals. In one group CBF was measured, and the second group was examined for tissue damage after 7 days. Fifteen and 30 minutes of MCA occlusion in combination with hyperglycemia produced larger infarcts and smaller amounts of selective neuronal necrosis than in rats with normal blood glucose levels, a significant difference in the total volume of ischemic damage being found after 30 minutes of MCA occlusion. After 60 minutes of occlusion, when the volume of infarction was larger, only minor differences between normoglycemic and hyperglycemic animals were found. Hypercapnic animals showed volumes of both selective neuronal necrosis and infarction that were almost identical with those observed in normoglycemic, normocapnic animals. When local CBF was measured in the ischemic core after 30 minutes of occlusion, neither the hyperglycemic nor the hypercapnic animals were found to be significantly different from the normoglycemic group. Brief focal cerebral ischemia combined with hyperglycemia leads to larger and more severe tissue damage. Our results do not support the hypothesis that the aggravated injury is caused by any disturbances in CBF.  相似文献   

16.
Although apoptotic cell death has been suggested to be involved in ischemic injury of the brain, the precise mechanisms of ischemic neuronal cell death are unknown. Here, we examined the biochemical feature of apoptosis (i.e. DNA fragmentation) in male spontaneously hypertensive rats (5-7 months old) subjected to photothrombotic distal middle cerebral artery (MCA) occlusion. After MCA occlusion, the brain was cut in a cryostat to produce a standard coronal block and samples were dissected from the regions corresponding to the ischemic core, penumbra and contralateral control areas. Changes in cerebral blood flow (CBF) were monitored at 1 mm posterior and 2-4 mm lateral to the bregma by means of a laser-Doppler flowmetry. After MCA occlusion, CBF was decreased to 72+/-18 (+/-S.D.), 50+/-14, and 35+/-11% of the control values at 2, 3, and 4 mm from the midline, respectively. DNA fragmentation characteristics of apoptosis were examined in these samples by conventional and pulse-field gel electrophoresis. On the conventional gel electrophoresis, nucleosomal DNA fragmentation was detected in the penumbral zone at 6 h after MCA occlusion. Large DNA fragments of 50 and 20 kbp were detected in the penumbral zone and also in the ischemic core region at 3 h after distal MCA occlusion. The large DNA fragments seen on the pulse-field gel elecrophoresis were further degraded to small DNA fragments at 6 h after MCA occlusion in the penumbral zone but not in the core regions. The evolving DNA fragmentation was observed between 3 and 6 h after the onset of brain ischemia in the penumbra, suggesting that apoptosis may contribute to the development of ischemic infarction.  相似文献   

17.
Regional cerebral blood flow after occlusion of the middle cerebral artery   总被引:3,自引:0,他引:3  
Occlusions of the middle cerebral artery (MCA) are mostly of embolic origin (appr. 80%) and give rise to about one third of all ischemic strokes, most of these being major strokes. MCA occlusions lasting for less than 1/2 h are tolerated without occurrence of permanent tissue damage. Occlusions lasting between 1/2 h to 4-8 h lead to permanent tissue damage and neurological deficits that are proportional to the duration of occlusion. Maximal tissue damage is obtained after 4-8 h occlusion. A cerebral blood flow of 8-23 ml/100 gr/min is sufficient for cellular viability but insufficient for normal tissue function ("ischemic penumbra"). Cellular function is completely abolished in the interval 8-16 ml/100 gr/min and flow at that level is tolerated only for 1-3 h before neuronal death ensues. In the interval 18-23 ml/100 gr/min there is some functional activity although it is reduced. Experimental and clinical evidence suggests that flow in this interval may be tolerated for several days, months or even longer ("chronic ischemic penumbra"). After MCA occlusion the blood flow falls below 8 ml/100 gr/min in most cases and permanent MCA occlusion always leads to relatively large areas of frank infarction. The ischemic infarcts may be surrounded by collaterally perfused areas where the blood flow is pressure-dependent (impaired autoregulation) and quite commonly insufficient for normal neuronal function (below 23 ml/100 gr/min). Such collaterally perfused areas may include a "chronic ischemic penumbra". Emboli causing MCA occlusions commonly disintegrate and/or migrate more peripherally within the first few weeks post stroke. This leads to reperfusion and changes of ischemic infarcts into hyperemic infarcts where flow is severely increased. The vascular reactivity is completely abolished in hyperemic infarcts and the hyperemic state lasts for about two weeks. Probably, anemic infarcts are equivalent to ischemic infarcts while the hemorrhagic variety is equivalent to hyperemic infarcts. The "partial infarct" with selective neuronal necrosis occurs in experimental animals after MCA occlusions of less than four h but not after permanent MCA occlusion. The significance of partial infarction in human stroke is not clarified. The extent of irreversible tissue damage can be reduced only if therapy sets in within 4-8 h after the occlusion. If a "chronic penumbra" exists the extension of reversible tissue damage can be reduced if therapy aimed at increasing the blood flow in the penumbra sets in within weeks or even months after the stroke.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Cerebral ischemia in the territory of the middle cerebral artery (MCA) can induce delayed neuronal cell death in the ipsilateral substantia nigra (SN) remote from the primary ischemic lesion. This exofocal postischemic neuronal degeneration (EPND) may worsen stroke outcomes. However, the mechanisms leading to EPND are poorly understood. Here, we studied the time course of EPND via sequential magnetic resonance imaging (MRI) and immunohistochemistry for up to 28 days after 30 minutes occlusion of the MCA (MCAo) and reperfusion in the mouse. Furthermore, the effects of delayed treatment with FK506 and MK-801 on the development of EPND were investigated. Secondary neuronal degeneration in the SN occurred within the first week after MCAo and was characterized by a marked neuronal cell loss on histology. Sequential neuroimaging examinations revealed transient MRI changes, which were detectable as early as day 4 after MCAo and thus heralding histologic evidence of EPND. Treatment with MK-801, an established anti-excitotoxic agent, conferred protection against EPND even when initiated days after the initial ischemic event, which was not evident with FK506. Our findings define a secondary time window for delayed neuroprotection after stroke, which may provide a promising target for the development of novel therapies.  相似文献   

19.
We examined serial changes of diffusion- (DWI) and T2-weighted (T2WI) magnetic resonance images 30 minutes to 3 hours after intraluminal suture occlusion of the middle cerebral artery (MCA) in eight rats and after sham occlusion in four. We correlated the abnormal areas on DWI and T2WI with postmortem areas of infarction determined by 2,3,5-triphenyltetrazolium chloride (TTC), 24 hours after the operation. The 30-minute DWI in each MCA-occluded rat demonstrated increased signal intensity in the ipsilateral MCA territory, while T2WI showed no changes. At 3 hours, the ipsilateral DWI signal intensity increased further and the area of abnormality slightly increased. In some animals, the 3-hour T2WI disclosed an area of hyperintensity significantly smaller than that seen on the 30-minute DWI. TTC staining demonstrated an extensive MCA infarction in all rats with permanent MCA occlusion, confirmed by hematoxylin and eosin staining. The percent infarcted area of coronal brain sections, as determined by TTC staining, correlated significantly with areas on similar DWI sections at both 30 minutes and 3 hours. Sham-occluded control animals did not display any changes on DWI, T2WI, or TTC staining. The present study suggests that DWI is a very sensitive modality for detecting early ischemic brain injury, being highly correlated with post-mortem area of infarction, and may be useful to assess pharmacologic intervention.  相似文献   

20.
大鼠短暂局灶性大脑中动脉缺血后calpain的表达   总被引:5,自引:0,他引:5  
目的:研究calpain在缺血性脑损伤中的作用,进一步探讨缺血性脑血管病的分子机制,为治疗研发提供理论依据。方法:用Belayev改良的Langa线栓法制备大鼠局灶性大脑中动脉(MCA)缺血/再灌注模型,TTC染色观察梗死灶的形成,分别用原位杂交及免疫组化技术检测鼠脑中calpain mRNA与活性蛋白的表达。结果:缺血2h再灌注24h,TTC染色见明显的梗死灶形成,正常脑组织、假手术组及:MCAO缺血对侧脑中有少量的calpain mRNA表达,但活性蛋白几无表达;缺血脑组织calpain mRNA表达及蛋白质活化均显著增加,呈双峰式,MCA缺血2h增加,再灌注4h减少,至24h更明显增高,而48h又有所下降。结论:Calpain参与了缺血性脑损伤过程,尤其在迟发性神经元死亡中起重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号