首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Apoptosis and protein expression after focal cerebral ischemia in rat   总被引:1,自引:0,他引:1  
We used double staining histochemistry to investigate the relationship between apoptotic cell death and selective protein expression associated with DNA damage (p53, Bax, MDM2, Gadd45), DNA repair (PCNA) and cell cycle proteins (cyclin A, cyclin D, cdk2, cdk4) in rats (n=6; control rats, n=5) subjected to transient (2 h) middle cerebral artery occlusion (MCAo) and 46 h of reperfusion. Few apoptotic cells were detected in the non-ischemic hemisphere of control rats. In ischemic animals, scattered apoptotic cells were present in the ischemic core and clustered apoptotic cells were present and localized to the inner boundary zone of the ischemic core. Proteins were preferentially localized to the cellular cytoplasm of control rats and in the non-ischemic hemisphere of rats subjected to MCAo. However, after MCAo these proteins were expressed and were preferentially localized to nuclei within the ischemic lesion. DNA damage induced proteins (wt-p53 and p53-response proteins) were preferentially expressed within apoptotic cells after ischemia. DNA repair proteins and cell cycle proteins were preferentially expressed within morphologically intact cells and in reversibly damaged cells in the ischemic areas. The selective expression of proteins associated with DNA damage, DNA repair and cell cycle observed in morphologically intact cells, ischemic injured cells and apoptotic cells suggests a differential role for these proteins in cell survival and apoptosis after stroke.  相似文献   

2.
Summary: Purpose: The antiepileptic effects of zonisamide (ZNS) have been well documented experimentally and clinically. The purpose of this study was to examine whether ZNS reduces cerebral damage after transient focal ischemia in rats.
Methods : Ischemia was induced by a transient occlusion of the left middle cerebral artery (MCA) with a 3-0 nylon monofilament for 90 min. Neurological evaluation was performed by measuring the event of neurological deficit of the contralateral forepaw and hindpaw at 10 min and 1 day after MCA occlusion (MCAo). Brain infarct size was determined by measuring triphenyltetrazonium chloridenegative stained area of the serial brain sections 1 day after MCAo.
Results : The pre- or postischemic treatment with ZNS [(10–100 mgkg P.o.), 30 min before and 4 h after or 15 min and 4 h after the occlusion] markedly reduced cerebral damage in the ipsilateral hemisphere and the neurological deficit induced by transient ischemia. The reducing effect on the damage was observed in the cortical and subcortical regions. Preischemic treatment with carbamazepine (CBZ 60 mgkg p.0. twice 30 min before and 4 h after MCAo) tended to reduce the cerebral damage and neurological deficit, but the lower dose (20 mg/kg p.o. twice) did not. Valproate (VPA 1,000 mgkg p.o. twice) also had no effect.
Conclusions : ZNS at the anticonvulsant dose, unlike CBZ and VPA, ameliorated the brain infarction and the event of neurological deficit after transient focal cerebral ischemia. These data suggest that ZNS has therapeutic potential in protecting against ischemic cerebral damage, such as stroke.  相似文献   

3.
Alterations of the second-messenger systems, adenylate cyclase (AC) and protein kinase C (PKC), and local cerebral blood flow (lCBF) were evaluated during experimental cerebral ischemia in gerbils employing a quantitative autoradiographic method, which permitted these three parameters to be measured in the same brain. Ischemia was induced by occlusion of the right common carotid artery for 6 h. Animals attaining more than 5 in their ischemic scores were utilized for further experiments. At the end of ischemia, lCBF was measured by the [14C]iodoantipyrine method. The AC and PKC activities were estimated by the autoradiographic technique developed in our laboratory using [3H]forskolin (FK) and [3H]phorbol-12,13-dibutyrate (PDBu), respectively. The lCBF fell below 10 ml/100 g/min in most cerebral regions on the ligated side. The greatest reduction in FK binding was noted in the olfactory tubercle, caudate-putamen, and globus pallidus, followed by the hippocampus and cerebral cortices. The FK binding tended to be low at lCBF less than 20 ml/100 g/min in the cerebral cortices. However, the PDBu binding was relatively well preserved in each cerebral structure, and no significant correlation between lCBF and PDBu binding was noted in the cerebral cortices. The AC system may thus be vulnerable to ischemic insult over extensive brain regions, while the PKC system may be relatively resistant to ischemia.  相似文献   

4.
The effects of the kappa-1 opioid agonist CI-977 upon the volume of ischemic brain damage (defined using quantitative neuropathology) and local cerebral blood flow (CBF) (defined using quantitative [14C]iodoantipyrine autoradiography) have been examined at 4 h and 30 min, respectively, after permanent middle cerebral artery (MCA) occlusion in halothane-anesthetised rats. Treatment with CI-977 (0.3 mg/kg, s.c.) 30 min before and 30 min after occlusion of the MCA reduced the volume of infarction in the cerebral hemisphere (reduced by 27% when compared to vehicle;P<0.05) and cerebral cortex (reduced by 32%;P<0.05), despite a marked and sustained hypotension, with only minimal effect on damage in the caudate nucleus. In the hemisphere contralateral to the occluded MCA, treatment with CI-977 (0.3 mg/kg, s.c.) 30 min prior to the induction of ischemia failed to demonstrate any significant effect on either the level of local CBF in any of the 25 regions examined or on the volume of low CBF determined by frequency distribution analysis. In the hemisphere ipsilateral to MCA occlusion, CI-977 failed to produce statistically significant alterations in either the level of local CBF in 23 of the 25 regions or on the volume of low CBF, but areas of hyperemia were observed in both the medial caudate nucleus and lateral thalamus (local CBF increased by 65% and 86%, respectively, when compared to vehicle). The results of the present study indicate that the kappa-1 opioid agonist CI-977 is neuroprotective in a rat model of focal cerebral ischemia where key physiological variables have been assessed throughout the entire post-ischemic period, and fail to demonstrate that the neuroprotective effects of CI-977 in this model are due to improved blood flow to ischemic tissue.  相似文献   

5.
We have previously shown that tamoxifen can induce marked neuroprotection after middle cerebral artery occlusion (MCAo) in rats and have described two possible mechanisms of action: namely, inhibition of EAA release and inhibition of nNOS activity. In this study we tested other potential mechanisms. Namely, agonist action at estrogen receptors and an antioxidative action. Tamoxifen-treated rats had significantly improved neurobehavioral deficit scores after 24 h and showed approximately 75% reduced infarct volumes. These were unaffected by ICI 182,780 (a high affinity and pure receptor antagonist) administered intravenously, or intracisternally to avoid possible lack of brain penetration, 15 min before intravenous administration of tamoxifen. In rats subjected to 2 h MCAo followed by 22 h reperfusion, 1.8-fold and 2.9-fold increases of F(2)-IsoPs and F(4) neuroprostanes, respectively, as relatively stable markers of oxidative damage, were measured in the ischemic hemisphere compared with the corresponding contralateral hemisphere or sham controls. Tamoxifen given at 3 h after the start of ischemia reduced the IsoPs and NeuroPs to sham control levels, and also inhibited their production by chemically induced lipid peroxidation in brain homogenates. These data are consistent with at least part of tamoxifen's marked neuroprotection in focal cerebral ischemic injury being due to its antioxidant activity but not by an acute action on estrogen receptors (212 words).  相似文献   

6.
Adenosine A(2A) receptor antagonists have been proved protective in different ischemia models. In this study we verified if the protective effect of the selective A(2A) antagonist, SCH 58261, could be attributed to the reduction of the excitatory amino acid outflow induced by cerebral focal ischemia. A vertical microdialysis probe was inserted into the striatum of male Wistar rats and, after 24 h, permanent right intraluminal middle cerebral artery occlusion (MCAo) was induced. Soon after waking, rats showed a definite contralateral turning behavior, which persisted up to 7 h after MCAo. During 4 h after MCAo, glutamate, aspartate, GABA, adenosine and taurine outflow increased. SCH 58261 (0.01 mg/kg, i.p.), administered 5 min after MCAo, suppressed turning behavior and significantly reduced the outflow of glutamate, aspartate, GABA and adenosine. At 24 h after MCAo, the rats showed severe sensorimotor deficit and damage in both the striatum and cortex. SCH 58261 significantly reduced cortical damage but did not protect against the sensorimotor deficit. The protective effect of SCH 58261 against turning behavior and increased outflow of excitatory amino acids in the first hours after MCAo suggests the potential utility of selective adenosine A(2A) antagonists when administered in the first hours after ischemia. Furthermore, this study, for the first time, proposes that turning behavior after permanent intraluminal MCAo, be used as a precocious index of neurological deficit and neuronal damage.  相似文献   

7.
Mismatches between tissue perfusion-weighted imaging (PWI; an index of blood flow deficit) and cellular diffusion-weighted imaging (DWI; an index of tissue injury) provide information on potentially salvageable penumbra tissue in focal stroke and can identify “treatable” stroke patients. The present pre-clinical studies were conducted to: a.) Determine PWI (using perfusion delay) and DWI measurements in two experimental stroke models, b.) Utilize these measurements to characterize selective ETA receptor antagonism (i.e., determine efficacy, time-to-treatment and susceptibility to treatment in the different stroke models), and c.) Determine if increasing the reduced blood flow following a stroke is a mechanism of protection. Permanent middle cerebral artery occlusion (MCAO) or sham surgeries were produced in Sprague Dawley rats (SD; proximal MCAO; hypothesized to be a model of slowly evolving brain injury with a significant penumbra) and in spontaneously hypertensive rats (SHR; distal MCAO; hypothesized to be a model of rapidly evolving brain injury with little penumbra). Infusions of vehicle or SB 234551 (3, 10, or 30 µg/kg/min) were initiated at 0, 75, and/or 180 min post-surgery and maintained for the remainder of 24 h post-surgery. Hyper-intense areas of perfusion delay (PWI) in the forebrain were measured using Gadolinium (Gd) bolus contrast. DWI hyper-intense areas were also measured, and the degree of forebrain DWI-PWI mismatch was determined. Region specific analyses (ROI) were also conducted in the core ischemic and low perfusion/penumbra areas to provide indices of perfusion and changes in the degree of tissue perfusion due to SB 234551 treatment. At 24 h post-surgery, final infarct volume was measured by DWI and by staining forebrain slices. Following SD proximal MCAO, there was a significant mismatch in the ischemic forebrain PWI compared to DWI (PWI > DWI) at 60 min which was maintained up to 150 min (all p < 0.05). By 24 h post-stroke, infarct volume was identical to the area of early perfusion deficit/PWI, suggesting a slow progression of infarct development that expanded into the significant, earlier cortical penumbra (i.e., model with salvageable tissue with potential for intervention). When SB 234551 was administered within the period of peak mismatch (i.e., at 75 min post-stroke), SB 234551 provided significant dose-related reductions in cortical (penumbral) progression to infarction (p < 0.05). Cortical protection was related to an increased/normalization of the stroke-induced decrease in tissue perfusion in cortical penumbra areas (p < 0.05). No SB 234551-induced changes in reduced tissue perfusion were observed in the striatum core ischemic area. Also, when SB-234551 was administered beyond the time of mismatch, no effect on cortical penumbra progression to infarct was observed. In comparison and strikingly different, following SHR distal MCAO there was no mismatch between PWI and DWI (PWI = DWI) as early as 60 min post-stroke, with this early change in SHR DWI being identical to the final infarct volume at 24 h, suggesting a rapidly occurring brain injury with little cortical penumbra (i.e., model with little salvageable tissue or potential for intervention). In distal MCAO, SB 234551 administered immediately at the time of stroke did not have any effect on infarct volume in SHR. These data demonstrate that selective blockade of ETA receptors is protective following proximal MCAO in SD (i.e. a model similar to “treatable” clinical patients). The protective mechanism appears to be due to enhanced collateral blood flow and salvage of penumbra. Therefore, the use of PWI-DWI mismatch signatures can identify treatable stroke models characterized by a salvageable penumbra and can define appropriate time to treatment protocols. In addition, tissue perfusion information obtained under these conditions might clarify mechanism of protection in the evaluation of protective compounds for focal stroke.  相似文献   

8.
Zhao Z  Cheng M  Maples KR  Ma JY  Buchan AM 《Brain research》2001,909(1-2):46-50
Free radicals have gained wide acceptance as mediators of cerebral ischemic injury. It has previously been reported that a spin trap nitrone, alpha-phenyl-N-tert-butyl nitrone (PBN), can reduce infarct volumes in rats subjected to either permanent or transient focal cerebral ischemia. A recent study has demonstrated that NXY-059, a novel free radical trapping nitrone compound, has a neuroprotective effect against transient focal cerebral ischemia. This study was designed to determine the effect of NXY-059 in a rodent model of permanent focal cerebral ischemia. Male spontaneously hypertensive rats were subjected to permanent middle cerebral artery occlusion (MCAO) by placement of a microaneurysm clip on the middle cerebral artery (MCA). Animals were divided into three groups: (1) physiological saline given as a 1 ml/kg i.v. bolus administered 5 min post MCAO followed immediately by a continuous i.v. infusion of 0.5 ml/h of physiological saline for 24 h (n=10); (2) 30 mg/kg, 1 ml/kg, i.v. bolus of NXY-059 dissolved in physiological saline administered 5 min post MCAO followed immediately by a continuous i.v. infusion of 30 mg/kg/h, 0.5 ml/h, of NXY-059 for 24 h (n=9); (3) 60 mg/kg, 1 ml/kg, i.v. bolus of NXY-059 dissolved in physiological saline administered 5 min post MCAO followed immediately by a continuous i.v. infusion of 60 mg/kg/h, 0.5 ml/h, of NXY-059 for 24 h (n=12). Infarction was quantified after a survival period of 24 h. Differences in infarct volume were examined with one-way ANOVA following Dunnet's multiple comparison test. The percentage of cortical infarction in the saline control group was 22.6 +/- 6.8% (mean+/-S.D.) of contra-lateral hemisphere, and in the 30 mg/kg/h NXY-059-treated group was 17.4% +/- 6.8% (NS). Plasma concentration (microM/l) of NXY-059 in the 30 mg/kg/h group was 80.2 +/- 52.2 (n=9), while in the 60 mg/kg/h group plasma concentration (microM/l) of NXY-059 was 391.0 +/- 207.0 (n=10). Infarction in the 60 mg/kg/h NXY-059-treated group was significantly reduced (P=0.009) to 14.5 +/- 5%. Our preliminary data demonstrate that administration of NXY-059 (60 mg/kg/h for 24 h) ameliorates cortical infarction in rats subjected to permanent focal cerebral ischemia with 24 h survival.  相似文献   

9.
A significant proportion of neurologic patients suffer electroencephalographic (EEG) seizures in the acute phase following traumatic or ischemic brain injury, including many without overt behavioral manifestations. Although such nonconvulsive seizures may exacerbate neuropathological processes, they have received limited attention clinically and experimentally. Here we characterize seizure episodes following focal cerebral ischemia in the rat as a model for brain injury-induced seizures. Cortical EEG activity was recorded continuously from both hemispheres up to 72 h following middle cerebral artery occlusion (MCAo). Seizure discharges appeared in EEG recordings within 1 h of MCAo in 13/16 (81%) animals and consisted predominantly of generalized 1-3 Hz rhythmic spiking. During seizures animals engaged in quiet awake or normal motor behaviors, but exhibited no motor convulsant activity. Animals had a mean of 10.6 seizure episodes within 2 h, with a mean duration of 60 s per episode. On average, seizures ceased at 1 h 59 min post-MCAo in permanently occluded animals and did not occur following reperfusion at 2 h in transiently occluded animals. In addition to seizures, periodic lateralized epileptiform discharges (PLEDs) appeared over penumbral regions in the injured hemisphere while intermittent rhythmic delta activity (IRDA) recurred in the contralateral hemisphere with frontoparietal dominance. PLEDs and IRDA persisted up to 72 h in permanent MCAo animals, and early onset of the former was predictive of prolonged seizure activity. The presentation of these EEG waveforms, each with characteristic features replicating those in clinical neurologic populations, validates rat MCAo for study of acutely induced brain seizures and other neurophysiological aspects of brain injury.  相似文献   

10.
Since hypertension and/or hyperglycemia are risk factors for stroke, we examined whether the putative neuroprotectant, nicotinamide (NAm), could protect spontaneously hypertensive rats (SHR) or diabetic Fischer 344 rats against focal cerebral ischemia using a model of permanent middle cerebral artery occlusion (MCAo). Intravenous NAm given 2 h after MCAo significantly reduced the infarct volume of SHR (750 mg/kg, 31%, P<0.01) and diabetic (500 mg/kg, 56%, P<0.01) as well as non-diabetic (500 mg/kg, 73%, P<0.01) Fischer 344 rats when compared with saline-injected controls. Thus delayed treatment with NAm protected hypertensive and hyperglycemic rats against a robust model of stroke.  相似文献   

11.
The effects of the competitive N-methyl-D-aspartate (NMDA) receptor antagonist D-(E)-4-(3-phosphonoprop-2-enyl)piperazine-2-carboxylic acid (D-CPP-ene; SDZ EAA 494) upon ischemic brain damage have been examined in anesthetized cats. Focal cerebral ischemia was produced by permanent occlusion of the middle cerebral artery (MCA) and the animals were killed 6 h later. The amount of early ischemic brain damage was assessed in coronal sections at 16 predetermined stereotaxic planes. Pretreatment with D-CPP-ene (15 mg/kg i.v. followed by continuous infusion at 0.17 mg/kg/min until death), 15 min prior to MCA occlusion, significantly reduced the volume of ischemic brain damage (from 20.6 +/- 9.9% of the cerebral hemisphere in vehicle-treated cats to 7.2 +/- 4.4% in drug-treated cats; p less than 0.01). The competitive NMDA receptor antagonist D-CPP-ene is as effective as noncompetitive NMDA antagonists in reducing the amount of ischemic brain damage in this model of focal cerebral ischemia in a gyrencephalic species.  相似文献   

12.
Reactive oxygen species play a role in neuronal damage following cerebral ischemia-reperfusion. We tested whether activity of the superoxide-generating enzyme, NADPH-oxidase, is enhanced in cerebral arteries within, adjacent and distant from the ischemic core. The right middle cerebral artery (MCA) of conscious rats was temporarily occluded by perivascular injection of endothelin-1 to induce stroke (ET-1; n=19). Control rats were injected with saline (n=9). At 24 h or 72 h post-administration of ET-1, the MCA and its branches within the ipsilateral penumbra and infarcted core, corresponding arteries in the contralateral hemisphere, and basilar artery were excised. Anatomically similar arteries were excised from saline-injected rats. At 24 h after stroke, NADPH-stimulated superoxide production by arteries from the infarcted core did not differ from levels generated by arteries from control rats, whereas levels were significantly lower 72 h after stroke. However, at both time points after stroke, superoxide production by arteries from the ischemic penumbra was 8-fold greater than levels generated by arteries from control rats. Surprisingly, even in the non-ischemic arteries from the contralateral hemisphere and in the basilar artery, superoxide production was increased approximately 4- to 6-fold at 24 h, but had returned to normal 72 h after stroke. The NADPH-oxidase inhibitor, diphenyleneiodonium, virtually abolished superoxide production by all arteries. Thus, the activity of NADPH-oxidase is enhanced in cerebral arteries from the ischemic penumbra at 24 h and 72 h following cerebral ischemia. Additionally, NADPH-oxidase activity is temporarily enhanced after cerebral ischemia within arteries from non-ischemic parts of the brain.  相似文献   

13.
The aim of the present study was to evaluate p38 MAPK activation following focal stroke and determine whether SB 239063, a novel second generation p38 inhibitor, would directly attenuate early neuronal injury. Following permanent middle cerebral artery occlusion (MCAO), brains were dissected into ischemic and non-ischemic cortices and Western blots were employed to measure p38 MAPK activation. Neurologic deficit and MR imaging were utilized at various time points following MCAO to monitor the development and resolution of brain injury. Following MCAO, there was an early (15 min) activation of p38 MAPK (2.3-fold) which remained elevated up to 1 h (1.8-fold) post injury compared to non-ischemic and sham operated tissue. Oral SB 239063 (5, 15, 30, 60 mg/kg) administered to each animal 1 h pre- and 6 h post MCAO provided significant (P<0.05) dose-related neuroprotection reducing infarct size by 42, 48, 29 and 14%, respectively. The most effective dose (15 mg/kg) was further evaluated in detail and SB 239063 significantly (P<0.05) reduced neurologic deficit and infarct size by at least 30% from 24 h through at least 1 week. Early (i.e. observed within 2 h) reductions in diffusion weighted imaging (DWI) intensity following treatment with SB 239063 correlated (r=0.74, P<0.01) to neuroprotection seen up to 7 days post stroke. Since increased protein levels for various pro-inflammatory cytokines cannot be detected prior to 2 h in this stroke model, the early improvements due to p38 inhibition, observed using DWI, demonstrate that p38 inhibition can be neuroprotective through direct effects on ischemic brain cells, in addition to effects on inflammation.  相似文献   

14.
15.
BACKGROUND AND PURPOSE: We have previously shown that nicotinamide (NAm) acutely reduces brain infarction induced by permanent middle cerebral artery occlusion (MCAo) in rats. In this study, we investigate whether NAm may protect against ischemia/reperfusion injury by improving sensory and motor behavior as well as brain infarction volumes in a model of transient focal cerebral ischemia. METHODS: Forty-eight male Wistar rats were used, and transient focal cerebral ischemia was induced by MCAo for 2 hours, followed by reperfusion for either 3 or 7 days. Animals were treated with either intraperitoneal saline or NAm (500 mg/kg) 2 hours after the onset of MCAo (ie, on reperfusion). Sensory and motor behavior scores and body weight were obtained daily, and brain infarction volumes were measured on euthanasia. RESULTS: Relative to treatment with saline, treatment with NAm (500 mg/kg IP) 2 hours after the onset of transient focal cerebral ischemia in Wistar rats significantly improved sensory (38%, P<0.005) and motor (42%, P<0.05) neurological behavior and weight gain (7%, P<0.05) up to 7 days after MCAo. The cerebral infarct volumes were also reduced 46% (P<0.05) at 3 days and 35% (P=0.09) at 7 days after MCAo. CONCLUSIONS: NAm is a robust neuroprotective agent against ischemia/reperfusion-induced brain injury in rats, even when administered up to 2 hours after the onset of stroke. Delayed NAm treatment improved both anatomic and functional indices of brain damage. Further studies are needed to clarify whether multiple doses of NAm will improve the extent and duration of this neuroprotective effect and to determine the mechanism(s) of action underlying the neuroprotection observed. Because NAm is already used clinically in large doses and has few side effects, these results are encouraging for the further examination of the possible use of NAm as a therapeutic neuroprotective agent in the clinical treatment of acute ischemic stroke.  相似文献   

16.
Lipopolysaccharide (LPS), administered 72 hours before middle cerebral artery (MCA) occlusion, confers significant protection against ischemic injury. For example, in the present study, LPS (0.9 mg/kg intravenously) induced a 31% reduction in infarct volume (compared with saline control) assessed 24 hours after permanent MCA occlusion. To determine whether LPS induces true tolerance to ischemia, or merely attenuates initial ischemic severity by augmenting collateral blood flow, local CBF was measured autoradiographically 15 minutes after MCA occlusion. Local CBF did not differ significantly between LPS- and saline-pretreated rats (e.g., 34 +/- 10 and 29 +/- 15 mL x 100 g(-1) x min(-1) for saline and LPS pretreatment in a representative region of ischemic cortex), indicating that the neuroprotective action of LPS is not attributable to an immediate reduction in the degree of ischemia induced by MCA occlusion, and that LPS does indeed induce a state of ischemic tolerance. In contrast to the similarity of the initial ischemic insult between tolerant (LPS-pretreated) and nontolerant (saline-pretreated) rats, microvascular perfusion assessed either 4 hours or 24 hours after MCA occlusion was preserved at significantly higher levels in the LPS-pretreated rats than in controls. Furthermore, the regions of preserved perfusion in tolerant animals were associated with regions of tissue sparing. These results suggest that LPS-induced tolerance to focal ischemia is at least partly dependent on the active maintenance of microvascular patency and hence the prevention of secondary ischemic injury.  相似文献   

17.
The effects of the glutamate N-methyl-D aspartate (NMDA) receptor antagonist, MK-801, upon ischemic brain damage has been examined in anesthetized cats. Focal cerebral ischemia was produced by permanent occlusion of one middle cerebral artery and the animal were killed 6 h later. The amount of early ischemic damage was assessed in coronal sections at 16 predetermined stereotactic planes. Pretreatment with MK-801 (5 mg/kg, i.v.), 30 min before occlusion of the middle cerebral artery significantly reduced the volume of ischemic damage (from 32.7 +/- 4.0% of the cerebral hemisphere in vehicle-treated cats to 16.2 +/- 4.5% in MK-801-treated cats). NMDA receptor antagonists that penetrate the blood-brain barrier, such as MK-801, merit further study as protective agents against ischemic brain damage.  相似文献   

18.
We have shown that high-concentration albumin therapy is markedly neuroprotective in focal cerebral ischemia. The present study was conducted to ascertain the degree to which hemodynamic alterations are responsible for this therapeutic effect. Normothermic, physiologically regulated male Sprague–Dawley rats received a 2-h period of middle cerebral artery occlusion (MCAo) by insertion of an intraluminal suture coated with poly-l-lysine. Albumin (25% human serum albumin solution) or vehicle (0.9% sodium chloride) was administered intravenously at a dose of 1% of body weight immediately after suture withdrawal following 2-h MCAo. Local cerebral blood flow (LCBF) was measured autoradiographically with after 1 h of recirculation. Novel image-processing methods were used to compare average LCBF data sets against previously obtained infarction-frequency data on a pixel-by-pixel basis. Albumin therapy reduced mean hematocrit by 42% but produced no other systemic alterations. Pixel-based histopathological analysis revealed large, consistent cortical and subcortical infarcts in saline-treated rats with MCAo; albumin therapy reduced mean cortical infarct volume by 85%. Within regions showing albumin-associated neuroprotection, numbers of pixels having LCBF in the upper ischemic-core flow range (0.12–0.24 ml g−1 min−1) were reduced by 8.6-fold by albumin therapy when compared to saline-treated rats; and numbers of pixels with LCBF in the lower penumbral flow range (0.24–0.36 ml g−1 min−1) were reduced by 3.1-fold in albumin-treated rats (p=0.04 by repeated-measures analysis of variance). Analysis of the [albumin–saline] 3-dimensional difference-image data set revealed a circumferential zone of statistically significant albumin-associated LCBF increase within the posterior portion of the ischemic hemisphere, surrounding the core-region of prior ischemia. Thus, high-concentration albumin therapy improves local perfusion to regions of critical LCBF reduction. The spatial extent of this LCBF effect, however, appears too small to account fully for the marked neuroprotective efficacy of this therapy. We suggest that other, non-hemodynamic mechanisms may also be contributory.  相似文献   

19.
To determine if MRI can predict intracerebral plasminogen activation after focal cerebral ischemia (FCI), ischemic regions detected by MRI after 48 h of permanent FCI in rats were compared with areas of increased plasminogen activation, defined by histological zymography after 72 h of ischemia. The overlap between areas of MRI alterations (64.5% +/- 5.4% of total ischemic hemisphere) and areas with increased plasminogen activation (62.2% +/- 3.6%) was significant for the hemisphere (p < 0.001), the cortex (p < 0.05), and the basal ganglia (p < 0.05). Thus, MRI can predict the extent of increased plasminogen activation, which may play a role in BBB-mediated post-ischemic brain edema and secondary hemorrhage.  相似文献   

20.
Microcirculatory impairments have theoretically been proposed as a potential factor in the development of ischemic injury, but few attempts have been made to directly assess microvascular patency following stroke. To address this issue we investigated the temporal changes in microvascular perfusion induced by permanent focal ischemia. Halothane-anesthetized spontaneously hypertensive rats were subjected to middle cerebral artery occlusion (MCAO) of 5 min to 4 h duration. Two fluorescent tracers (FITC-dextran and Evans blue) were then sequentially administered i.v. and allowed to circulate for 10 and 5 s respectively. Tissue sections were examined by fluorescent microscopy, and the mean number of perfused microvessels/mm2 calculated for cortical areas representing non-ischemic (Region A), perifocal/penumbral (Region B) and core ischemic (Region C) regions. For sham-operated controls, virtually all microvessels perfused with tracer within 5 s. In contrast MCAO induced significant reductions in the number of perfused microvessels in Regions B and C. The most marked impairments in perfusion were observed in core MCA territory (e.g. 2–10% of control values for 5 s circulation period) while, initially, the deficit was less severe in penumbral cortex. However, a secondary perfusion impairment developed over time in the perifocal/penumbral region, so that the deficit was greater 4 h after MCAO than at earlier time points (e.g. 72%, 71% and 22% of control value for 0.5, 1 and 4 h MCAO respectively; 10 s circulation period). In conclusion, MCAO induced severe impairments in microcirculatory perfusion within the core ischemic region, and to a lesser extent in the penumbra. However, the development of a more severe perfusion deficit in the penumbra within 4 h of MCAO supports the hypothesis that microcirculatory failure in this region contributes to its recruitment to the ischemic infarct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号