首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 452 毫秒
1.
The origin and the terminations of the projections from the entorhinal cortex to the hippocampal formation of the mouse (C57BL/6J strain) have been studied using anterogradely and retrogradely transported tracers. The entorhinal cortex is principally divided into two areas, the lateral entorhinal area (LEA) and the medial entorhinal area (MEA). LEA is the origin of the lateral perforant path that terminates in the outer one-third of the molecular layer of the dentate gyrus, and MEA is the origin of the medial perforant path that ends in the middle one-third of the molecular layer of the dentate gyrus. This projection is mostly to the ispsilateral dentate gyrus; only a few labeled axons and terminals are found in the contralateral dentate gyrus. The projection to the dentate gyrus originates predominantly from neurons in layer II of the entorhinal cortex. The entorhinal cortex also projects to CA3 and CA1 and to subiculum; in both CA3 and CA1, the terminals are present in stratum lacunosum-moleculare, whereas in the subiculum the terminals are in the outer part of the molecular layer. The projection from the entorhinal cortex to CA3, CA1, and subiculum is bilateral, and it originates predominantly from neurons in layer III, but a small number of neurons in the deeper layers of the entorhinal cortex contributes to this projection. The projection of entorhinal cortex to the hippocampus is topographically organized, neurons in the lateral part of both LEA and MEA project to the dorsal part (i.e., septal pole) of the hippocampus, whereas the projection to the ventral (i.e., temporal pole) hippocampus originates from neurons in medial parts of the entorhinal cortex.  相似文献   

2.
The aim of this study was to determine whether somatostatin (SS)-immunoreactive neurons of the rat fascia dentata are involved in specific excitatory circuitries that may result in their selective damage in models of epilepsy. Synaptic connections of SS-immunoreactive neurons were determined at the electron microscopic level by using normal and colchicine pretreated rats. Vibratome sections prepared from both fascia dentata of control animals and from rats that had received an ipsilateral lesion of the entorhinal cortex 30-36 hours before sacrifice were immunostained for SS by using a monoclonal antibody (SS8). Correlated light and electron microscopic analysis demonstrated that many SS-immunoreactive neurons in the hilus send dendritic processes into the outer molecular layer of the fascia dentata, and dendrites of the same neurons occupy broad areas in the dentate hilar area. The majority of SS-immunoreactive axon terminals form symmetric synapses with the granule cell dendrites in the outer molecular layer and also innervate deep hilar neurons. Via their dendrites in the outer molecular layer, the SS-immunoreactive neurons receive synaptic inputs from perforant pathway axons which were identified by their anterograde degeneration following entorhinal lesions. The axons from the entorhinal cortex are the first segment of the main hippocampal excitatory loop. The hilar dendrites of the same SS-immunoreactive cells establish synapses with the mossy axon collaterals which represent the second member in this excitatory neuronal chain. These observations suggest that SS-immunoreactive neurons in the dentate hilar area may be driven directly by their perforant path synapses and via the granule cells which are known to receive a dense innervation from the entorhinal cortex. These observations demonstrate that SS-immunoreactive neurons in the hilar region are integrated in the main excitatory impulse flow of the hippocampal formation.  相似文献   

3.
The perforant path fibers from the entorhinal cortex form synapses with both granule cells and GABAergic, parvalbumin-containing (PARV) nongranule cells. The authors recently reported a persistent reduction of PARV-positive dendrites in the termination zones of entorhinal fibers in the hippocampus proper and fascia dentata after lesion of the entorhinal cortex. In the present study the authors analyzed the effects of de-entorhination on the ultrastructure of postsynaptic PARV-positive dendrites in the molecular layer of the fascia dentata. PARV immunocytochemistry was performed 2, 8, 55, and 360 days after an ipsilateral entorhinal lesion and, for comparison, 10 days after an ipsilateral fimbria-fornix transection that disconnects the hippocampus from its septal and commissural afferents. Two days after entorhinal lesion, the authors observed swelling of the tissue close to the hippocampal fissure. Adjacent distal dendritic tips of PARV-positive dendrites in the former perforant path termination zone persisted 55 days after entorhinal lesion and could still be observed after postlesional survival times for 1 year. Degenerating axon terminals were still present 55 days following lesion and PARV-positive dendrites exhibited abnormal invaginations. Fimbria transection did not result in similar dendritic changes in PARV-positive neurons. The results indicate a long-lasting process of reorganization in the molecular layer of the fascia dentata followin entorhinal lesion and persisting changes in the morphology of PARV-immunoreactive dendrites. Entorhinal fibers seem to play a specific role for the maintenance of these dendrites, since similar changes did not occur following removal of septal and commissural fibers.  相似文献   

4.
The perforant pathway originates from the entorhinal cortex of the anterior parahippocampal gyrus and terminates on the outer dendritic branches of the granule cells of the dentate gyrus and pyramidal cells of the subiculum and hippocampus. It carries the principal cortical input to the hippocampal formation. Destruction of the perforant pathway in experimental animals leads to a partial deafferentation of its target neurons, followed by a robust sprouting of acetylcholinesterase (AChE) terminals in the deafferented perforant pathway zone. In Alzheimer's disease, the cells of origin of the perforant pathway are laden with neurofibrillary tangles. AChE staining in the terminal zone of the perforant pathway in Alzheimer's disease shows several distinct patterns that are not found in control brains. These changes are consistent with the results of experimental studies demonstrating reinnervation in laboratory mammals, including nonhuman primates. The results suggest that in Alzheimer's disease sprouting of AChE-containing systems occurs in the hippocampal formation in response to disease-related cellular damage in the entorhinal cortex.  相似文献   

5.
Intracellular recordings were performed to examine the perforant path projection from layer III of the entorhinal cortex to the subiculum in rat combined hippocampal–entorhinal cortex slices. Electrical stimulation in the medial entorhinal cortex layer III caused short latency combined excitatory and inhibitory synaptic responses in subicular cells. In the presence of the GABAA antagonist bicuculline and the GABAB antagonist CGP-55845 A inhibition was blocked and isolated AMPA- or NMDA receptor-mediated EPSPs could be elicited. After application of the non-NMDA antagonist NBQX and the NMDA antagonist APV excitatory responses were completely blocked indicating a glutamatergic input from the neurons of the medial entorhinal cortex layer III. By stimulation from a close (< 0.2 mm) position in the presence of NBQX and APV and either CGP-55845 A or bicuculline we could record monosynaptic fast GABAA or slow GABAB receptor-mediated IPSPs, respectively. We compared synaptic responses in subicular cells induced by stimulation in the medial entorhinal cortex layer III with responses elicited by stimulation of afferent fibres in the alveus. The EPSPs of subicular cells induced by stimulation of alvear fibres could be significantly augmented by simultaneous activation of perforant path fibres originating in the medial entorhinal cortex layer III, while delayed activation of alvear fibres after stimulation of the perforant path resulted in a weak inhibition of the alveus evoked EPSPs. Thus, the perforant path projection activates monosynaptic excitation of subicular neurons. Therefore the entorhinal cortex does not only function as an important input structure of the hippocampal formation but is also able to modulate the hippocampal output via the entorhinal–subicular circuit.  相似文献   

6.
Bartesaghi R  Gessi T 《Hippocampus》2003,13(2):235-249
Previous evidence showed that single-shock stimulation of dorsal hippocampal commissure (PSD) fibers to the entorhinal cortex led to sequential activation of perforant path neurons to the dentate gyrus, dentate granule cells, pyramidal neurons of hippocampal fields CA3 and CA1, and, through reentrant hippocampal impulses, neurons of deep and superficial layers of the entorhinal cortex. The aim of the present study was to ascertain whether perforant path neurons to CA1 are activated by the PSD input and/or by the reentrant hippocampal impulses in this model. Field potentials evoked by single-shock (0.1-Hz) or repetitive (1-4 Hz) PSD stimulation were recorded in anesthetized guinea pigs from the entorhinal cortex, dentate gyrus, fields CA1 and CA3, and subiculum. A current source-density analysis of the evoked potentials was used to localize the input to field CA1 and dentate gyrus. After either single-shock or repetitive PSD stimulation, an early current sink was found in the molecular layer of the dentate gyrus, but no sink was present in CA1. With low-frequency PSD stimulation, a late (approximately 40-ms) surface positive wave occurred in field CA1 alone. During this wave, a current sink was found in the stratum lacunosum-moleculare of CA1, but no sink was present in the dentate gyrus. The late wave had threshold and magnitude related to the building up of the response evoked by reentrant hippocampal impulses in layer III of the entorhinal cortex and was abolished by selective interruption of the perforant path to CA1. The results show that the commissural input to the entorhinal cortex activates perforant path neurons to the dentate gyrus, but not those to field CA1 which are recruited by repetitive hippocampal impulses. These findings show different frequency-dependent patterns of loop operation that might be related to different behaviors.  相似文献   

7.
The brains of seizure-sensitive (SS) and seizure-resistant (SR) gerbils were studied with an immunocytochemical method to localize glutamic acid decarboxylase (GAD) to determine whether a defect existed in the inhibitory GABAergic system similar to that which has been reported in animal models of focal epilepsy in which GABAergic cell bodies and terminals are decreased in number. A major difference between the two strains of gerbils was found in the number of GABAergic neurons in the hippocampal formation. Specifically, a paradoxical increase occurred in the number of glutamate decarboxylase GAD-immunoreactive neurons: there were approximately 65% more GABAergic cells within the dentate gyrus and the CA3 region of the hippocampus in the SS gerbils. Furthermore, the density of GAD-immunoreactive puncta, the light microscopic correlates of synaptic boutons, was greater in the SS animals. Other histological methods were used to determine if the difference between SS and SR gerbils was specific for the GABAergic system. Nissl-stained preparations showed that the number of granule cells in the dentate gyrus was 20% greater in SS gerbils than in SR gerbils. An examination of some hippocampal afferents, efferents, and intrinsic connections with acetylcholinesterase histochemistry and the Timm's stain for heavy metals demonstrated no differences between the two strains. In addition, Golgi-stained preparations of the dentate gyrus indicated that the morphology of basket cells did not differ between the two strains nor between the gerbil and the rat. Several brain regions in addition to the hippocampus were studied to determine whether or not the increased number of GAD-immunoreactive neurons was specific for the hippocampal formation. These regions included the substantia nigra, motor cortex, and nucleus reticularis thalami and were selected because they contain large populations of GABAergic neurons and have been implicated in seizure activity. No differences between the two strains were detected in any of these regions. Therefore, a major morphological difference between the brains of SS and SR gerbils exists in the hippocampal formation of SS gerbils in which an increase occurs in the number of GABAergic neurons and granule cells. If these additional inhibitory neurons act mainly to inhibit other inhibitory neurons, the net effect would be increased disinhibition of the principal excitatory neurons of the hippocampal formation. This could lead to seizure activity within the hippocampal formation and at distant sites through multiple synaptic connections.  相似文献   

8.
The Mongolian gerbil (Meriones unguiculatus) is known as a genetic model of epilepsy. Seizure behavior ranges from subtle events like arrest of motor activity and facial spasms to grand mal seizures followed by automatisms. Exploratory behavior in a stressful situation represents the most effective environment for provoking seizures in gerbils. Modifications of the inhibitory hippocampal circuits have been suggested as a cause of seizure susceptibility in the gerbil. This study presents a quantitative analysis of the hippocampal parvalbumin (PV)-immunoreactive and γ-aminobutyric acid (GABA)-immunoreactive neurons in gerbils whose seizure sensitivity had been scored. PV is a cytosolic calcium-binding protein synthesized by a subpopulation of GABAergic neurons and thought to be responsible for the fast spiking capability of this subset of neurons. We show that the number of PV-immunoreactive neurons in the CA1 field of the gerbil hippocampus decreases in repeatedly seizing animals as compared to non-seizing controls. The lowest density of PV-immunoreactive neurons was observed 1 hour after the last generalized seizure. No changes in the density of GABA-immunoreactive neurons in field CA1 paralleled the obvious loss of perikaryal PV-immunoreactivity. The CA1 field represents the final output region to extrahippocampal brain areas, and its recruitment or not into seizure activity is crucial for the spreading of hippocampal discharges to the adjacent neocortex. A reduction of such a calcium-buffering system in the soma and dendrites may affect the spike characteristics of PV-containing GABAergic neurons and may alter their response to glutamatergic transmission. A reduced inhibitory control of pyramidal cells may ensue, facilitating neuronal excitability as a result. Hippocampus 1997;7:524–535. © 1997 Wiley-Liss, Inc.  相似文献   

9.
The gamma-aminobutyric acid (GABAergic) system of the hippocampal formation of Macaca fascicularis monkeys was studied immunohistochemically with a monoclonal antibody to GABA and with nonisotopic in situ hybridization with cRNA probes for glutamic acid decarboxylase 65 (GAD65) and GAD67. The highest densities of labeled cells were observed in the presubiculum, parasubiculum, entorhinal cortex, and subiculum, whereas the CA3 field and the dentate gyrus had the lowest densities of positive neurons. Within the dentate gyrus, most of the GABAergic neurons were located in the polymorphic layer and in the deep portion of the granule cell layer. GABAergic terminals were densest in the outer two-thirds of the molecular layer. GABAergic neurons were seen throughout all layers of the hippocampus. Terminal labeling was highest in the stratum lacunosum-moleculare. A higher terminal labeling was observed in the subiculum than in CA1 and was particularly prominent in layer II of the presubiculum. A bundle of GABAergic fibers was visible deep to the cell layers of the presubiculum and subiculum. This bundle could be followed into the angular bundle ipsilaterally and was continuous with stained fibers in the dorsal hippocampal commissure. This pattern of labeling is reminiscent of the presubicular projections to the contralateral entorhinal cortex. GABAergic cells were observed in all layers of the entorhinal cortex although the density was higher in layers II and III than in layers V and VI. The in situ hybridization preparations largely confirmed the distribution of GABAergic neurons in all fields of the hippocampal formation.  相似文献   

10.
Previous studies with excitotoxically lesioned organotypic hippocampal slice cultures (OHSC) have revealed that the immunosuppressant mycophenolate mofetil (MMF) inhibits microglial activation and suppresses neuronal injury in the dentate gyrus. We here investigate whether MMF also has beneficial effects on axon survival in a long-range projection, the perforant path. Complex OHSC including the entorhinal cortex were obtained from Wistar rats (p8); the plane of section ensuring that perforant path integrity was preserved. These preparations were cultured for 9 days in vitro with or without MMF (100 microg/ml). After fixation, the perforant path was retrogradely labeled by application of the fluorescent dye DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindo-carbocyanine) in the hilus of the dentate gyrus, and neuronal perikarya were immunohistochemically stained by the neuron-specific marker NeuN. Analysis of DiI-labeled and NeuN-stained OHSC by confocal laser scanning microscopy revealed double-labeled neurons in the entorhinal cortex, which projected to the dentate gyrus via the perforant path. Quantitative analysis showed that the number of these double-labeled neurons was 19-fold higher in OHSC treated with MMF than in control cultures (P < 0.05). Our findings indicate that MMF treatment improves preservation of the perforant path and encourage further studies on development and regeneration of long-range projections under the influence of immunosuppressants.  相似文献   

11.
Seizure-sensitive (SS) and seizure-resistant (SR) Mongolian gerbils were used for three experiments. In the first experiment, GABAergic neurons and terminals in the dentate gyrus were localized with GAD immunocytochemistry. GAD-positive puncta adjacent to cell bodies of GABAergic pyramidal basket cells were counted in light microscopic preparations. The pyramidal basket cells of SS gerbils displayed a significant threefold increase in the number of GAD-positive puncta associated with their cell bodies as compared to those from SR gerbils. These data indicate that the number of GABAergic synapses with pyramidal basket cell bodies in the dentate gyrus was greater in SS gerbils. An electron microscopic (EM) analysis of GAD immunocytochemical preparations showed GAD-positive axon terminals forming symmetric synapses with GAD-positive basket cell bodies. However, numerous terminals forming symmetric axosomatic synapses with basket cells were not immunopositive, and other synapses formed by terminals were not classified because reaction product in the cell bodies obscured postsynaptic densities. Therefore, routine EM preparations were analyzed for symmetric and asymmetric axosomatic synapses on pyramidal basket cells and granule cells of SS and SR gerbils. The data obtained from these preparations showed that the pyramidal basket cells of SS gerbils had a selective increase in the number of symmetric synapses per 10 microns of soma as compared to those of the SR gerbils. In contrast, the granule cells did not show any significant difference in the number of either symmetric or asymmetric axosomatic synapses between SS and SR gerbils. These results indicate that pyramidal basket cell bodies of SS gerbils have more inhibitory synapses than do those of SR gerbils. The third experiment used SS gerbils with lesions of the perforant pathway that stopped seizure activity (Ribak, C. E., and S. U. Khan (1987) The effects of knife cuts of hippocampal pathways on epileptic activity in the seizure-sensitive gerbil. Brain Res. 418:251-260). The percentage of axon terminal area occupied by synaptic vesicles and their packing density was determined in CA3 mossy fiber boutons and compared for lesioned and nonlesioned SS gerbils. The mossy fibers of nonlesioned SS gerbils showed a depletion of synaptic vesicles consistent with the previous results of Peterson et al. (Peterson, G. M., C. E. Ribak, and W. H. Oertel (1985) A regional increase in the number of hippocampal GABAergic neurons and terminals in the seizure-sensitive gerbil. Brain Res. 340:384-389).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Immunocytochemical markers of specific rat hippocampal interneuron subpopulations, including the calcium binding proteins parvalbumin (PV), and calretinin (CR) were examined in relation to the evolution of spontaneous seizures after electrically induced status epilepticus (SE). PV/CR/NeuN immunoreactive neurons were counted in the hippocampal formation at different time intervals after SE and related to spontaneous hippocampal discharge activity. Decreased PV immunoreactivity was observed within 1 day after SE in the hilus, pre- and parasubiculum, and in the entorhinal cortex layers II and V/VI. In layer III, the density of detectable PV immunoreactive neurons did not decrease significantly, whereas the number of surrounding principal neurons was extensively decreased within a week in most post-SE rats, and after 3–4.5 months in all rats that had developed a progressive evolution of seizures. CR immunoreactive neuron number decreased in all hippocampal subregions except for the stratum lacunosum-moleculare and the EC layer II, in which the density did not decrease significantly. The apparent decrease in the number of PV and CR immunoreactive hilar neurons was correlated with the duration of the SE and was most extensive in rats with a progressive form of epilepsy. The loss of CR and PV expression or the loss of CR- and PV-containing neurons in specific regions of the hippocampal formation may play a role in the progressive nature of epilepsy possibly via increasing the entorhinal–hippocampal activity.  相似文献   

13.
The "disinhibition" hypothesis contends that (1) seizures begin when granule cells in the dentate gyrus of the dorsal hippocampus are disinhibited and (2) disinhibition occurs because GABAergic interneurons are excessively inhibited by other GABAergic interneurons. We tested the disinhibition hypothesis using the experimental model that inspired it-naturally epileptic Mongolian gerbils. To determine whether there is an excess of GABAergic interneurons in the dentate gyrus of epileptic gerbils, as had been reported previously, GABA immunocytochemistry, in situ hybridization of GAD67 mRNA, and the optical fractionator method were used. There were no significant differences in the numbers of GABAergic interneurons. To determine whether granule cells in epileptic gerbils were disinhibited during the interictal period, IPSPs were recorded in vivo with hippocampal circuits intact in urethane-anesthetized gerbils. The reversal potentials and conductances of IPSPs in granule cells in epileptic versus control gerbils were similar. To determine whether the level of inhibitory control in the dentate gyrus transiently decreases before seizure onset, field potential responses to paired-pulse perforant path stimulation were obtained from the dorsal hippocampus while epileptic gerbils experienced spontaneous seizures. Evidence of reduced inhibition was found after, but not before, seizure onset, indicating that seizures are not triggered by disinhibition in this region. However, seizure-induced depression of inhibition may amplify and promote the spread of seizure activity to other brain regions. These findings do not support the disinhibition hypothesis and suggest that in this model of epilepsy seizures initiate by another mechanism or at a different site.  相似文献   

14.
Lesion-induced neuronal plasticity in the adult central nervous system of higher vertebrates appears to be controlled by region- and layer-specific molecules. In this study we demonstrate that membrane-bound hippocampal outgrowth-promoting molecules, as present during the development of the entorhino-hippocampal system and absent or masked in the adult hippocampus, appear 10 days after transection of the perforant pathway. We used an outgrowth preference assay to analyse the outgrowth preference of axons from postnatal entorhinal explants on alternating membrane lanes obtained from hippocampus deafferented from its entorhinal input taken 4, 10, 20, 30 and 80 days post-lesion and from adult control hippocampus. Neurites from the entorhinal cortex preferred to extend axons on hippocampal membranes disconnected from their entorhinal input for 10 days in comparison with membranes obtained from unlesioned adult animals. Membranes obtained from hippocampi disconnected from their entorhinal input for 10 days were equally as attractive for growing entorhinal cortex (EC) axons as membranes from early postnatal hippocampi. Further analysis of membrane properties in an outgrowth length assay showed that entorhinal axons extended significantly longer on stripes of lesioned hippocampal membranes in comparison with unlesioned hippocampal membranes. This effect was most prominent 10 days after lesion, a time point at which axonal sprouting and reactive synaptogenesis are at their peak. Phospholipase treatment of membranes obtained from unlesioned hippocampi of adult animals strongly promoted the outgrowth length of entorhinal axons on these membranes but did not affect their outgrowth preference for deafferented hippocampal membranes. Our results indicate that membrane-bound outgrowth-promoting molecules are reactivated in the adult hippocampus following transection of the perforant pathway, and that neonatal entorhinal axons are able to respond to these molecules. These findings support the hypothesis of a temporal accessibility of membrane-bound factors governing the layer-specific sprouting of remaining axons following perforant path lesion in vivo.  相似文献   

15.
C E Ribak  S U Khan 《Brain research》1987,418(1):146-151
Previous studies have shown morphological differences in the hippocampal formation of seizure-sensitive gerbils as compared to seizure-resistant gerbils. To determine the significance of these differences, lesions were made of hippocampal afferents and efferents. Seizure-sensitive gerbils with bilateral knife cuts of the perforant path, including those with bilateral fornix lesions, showed no seizure activity following surgery. However, bilateral transections of the fimbria of the fornix, unilateral lesions of the perforant path and sham surgeries had no significant effect on seizure activity. The termination of seizure activity with bilateral lesions of the perforant path suggests that this pathway, as opposed to the fornix, is required for motor seizures in this strain of gerbils.  相似文献   

16.
Why layers II/III of entorhinal cortex (EC) deteriorate in advance of other regions during the earliest stages of Alzheimer''s disease is poorly understood. Failure of retrograde trophic support from synapses to cell bodies is a common cause of neuronal atrophy, and we accordingly tested for early-life deterioration in projections of rodent layer II EC neurons. Using electrophysiology and quantitative imaging, changes in EC terminals during young adulthood were evaluated in male rats and mice. Field excitatory postsynaptic potentials, input/output curves, and frequency following capacity by lateral perforant path (LPP) projections from lateral EC to dentate gyrus were unchanged from 3 to 8–10 months of age. In contrast, the unusual presynaptic form of long-term potentiation (LTP) expressed by the LPP was profoundly impaired by 8 months in rats and mice. This impairment was accompanied by a reduction in the spine to terminal endocannabinoid signaling needed for LPP-LTP induction and was offset by an agent that enhances signaling. There was a pronounced age-related increase in synaptophysin within LPP terminals, an effect suggestive of incipient pathology. Relatedly, presynaptic levels of TrkB—receptors mediating retrograde trophic signaling—were reduced in the LPP terminal field. LTP and TrkB content were also reduced in the medial perforant path of 8- to 10-month-old rats. As predicted, performance on an LPP-dependent episodic memory task declined by late adulthood. We propose that memory-related synaptic plasticity in EC projections is unusually sensitive to aging, which predisposes EC neurons to pathogenesis later in life.SIGNIFICANCE STATEMENT Neurons within human superficial entorhinal cortex are particularly vulnerable to effects of aging and Alzheimer''s disease, although why this is the case is not understood. Here we report that perforant path projections from layer II entorhinal cortex to the dentate gyrus exhibit rapid aging in rodents, including reduced synaptic plasticity and abnormal protein content by 8–10 months of age. Moreover, there was a substantial decline in the performance of an episodic memory task that depends on entorhinal cortical projections at the same ages. Overall, the results suggest that the loss of plasticity and related trophic signaling predispose the entorhinal neurons to functional decline in relatively young adulthood.  相似文献   

17.
The hippocampus and fascia dentata receive their major extrinsic input from the entorhinal area through the so-called perforant path. This pathway is now shown to be composed of at least two distinct fiber systems: (1) A medial perforant path coming from the medial part of the entorhinal area and terminating in the middle of the dentate molecular layer and in the deep half of the stratum lacunosum-moleculare of the hippocampal subfield CA3. (2) A lateral perforant path from the lateral part of the entorhinal area to a superficial zone in the dentate molecular layer and to the superfcial part of the stratum lacunosum-moleculare of CA3. This paper deals specifically with the lateral perforant path. A third group of perforant fibers, bing intermediate to the others with regard to both origin and termination has been noticed in one animal. The fiber-course of the lateral perforant path is found to be identical to that previously described for the medial path. The terminal field is present along the whole axial extent of the hippocampus and fascia dentata, i.e., from the temporal tip to the subsplenial portion. No sings of degeneration corresponding to the so-called alvear path were observed following lesions of either the medial or the lateral part of the entorhinal cortex. Terminal degeneration appeared in the molecular layer of the subiculum and CA1 and in the anterior continuation of the hippocampal formation subsequent to lesions including the prepyriform cortex.  相似文献   

18.
Summary. The GABAergic input on cortical pyramidal cells has an important influence on the firing activity of the cortex and thus in regulating the behavioural outcome. The aim of the current study was to investigate the long-term neuroplastic adaptation of the GABAergic innervation pattern after an early severe systemic impact. Therefore 40 Mongolian gerbils (Meriones unguiculatus) were either reared under impoverished (IR) or enriched rearing conditions (ER) and received a single early (+)-methamphetamine (MA) challenge (50 mg/kg i.p.) or saline on postnatal day 14. The density of perisomatic immunoreactive GABAergic terminals surrounding layers III and V pyramidal neurons was quantified as well as the overall GABAergic fibre density in layers I/II and V of the medial prefrontal cortex (mPFC) of young adult animals (90 days). We found that IR in combination with an early MA administration led to a significant decrease in GABAergic bouton densities while the overall GABAergic fibre density increased in all investigated layers. The results indicate a shift in inhibition from somatic to dendritic innervation of pyramidal neurons in this potential animal model of psychosis. We conclude that IR combined with early MA trigger changes in the postnatal maturation of the prefrontal cortical GABAergic triggers innervation, which may interfere with proper signal processing within the prefrontal neural network.  相似文献   

19.
The distribution of enkephalin immunoreactivity (EI) in the molecular layer of the hippocampal formation corresponded to the terminal field of the lateral perforant path and the lateral temporoammonic tract. The distribution of cholecystokinin immunoreactivity (CI) in the molecular layer of the hippocampal formation corresponded to the established terminal field of the medial temporoammonic tract. The exception was a CI band at the deep part of the molecular layer throughout the regio superior. Accordingly, an additional terminal field of the medial temporoammonic tract is suggested. Selective lesion of the entorhinal afferents to the hippocampus and the area dentata resulted in a disappearance of EI throughout the molecular layer with no affection of CI and vice versa. Neonatally X-ray irradiated hippocampi were examined as they appear in the adult animal. These animals are known to possess an altered relation between the granule cells of area dentata and the perforant path zones extending beyond a reduced medial blade into the stratum oriens of the regio inferior. In such animals EI and CI revealed the same pattern of changes by following the perforant path zones into stratum oriens due to neonatal X-ray irradiation. Accordingly, the perforant path may contain EI and CI independent of the granule cell dendrites. Based on a discussion of these observations we conclude that enkephalin immunoreactivity is localized in terminals of the lateral perforant path and the lateral temporoammonic tract and that cholecystokinin immunoreactivity is localized in the terminals of the medial perforant path and the medial temporoammonic tract.  相似文献   

20.
目的:本研究对内嗅皮质- 海马通路的各个亚支的发生进行了调查。方法:对不同龄大鼠脑用DiI、DiO、快兰示踪法及calretinin 免疫细胞化学法处理。结果:槽通路、海马交通通路于胚胎16 天(E16)开始发生,而穿通通路分别始见于胚胎17天海马的腔隙分子层和生后第2天齿状回外分子层。DiI的逆行标记显示内嗅皮质-海马通路主要来自内嗅皮质中II到IV层神经元。另外,calretinin免疫细胞化学法显示Cajal-Retzius (CR)细胞早在胚胎16天存在于海马的腔隙分子层,DiI和calretinin免疫细胞化学法双重标记显示CR细胞和内嗅皮质转入纤维之间可能存在密切的接触关系。结论:嗅皮质-海马通路的各个亚支是按照上述各自的时间表进行发生,CR细胞和穿通纤维的发育时空关系提示该细胞对内嗅皮质传入纤维寻径具有引导作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号