首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endosomal maturation and transport constitutes a complex trafficking system present in all cell types. Neurons have adapted their endosomal system to meet their unique and complex needs. These adaptations include repurposing existing proteins to diversify endocytosis and trafficking, as well as preferential expression of certain regulators more highly in neurons than other cell types. These neuronal regulators include the family of Neuron‐Specific Gene family members (Nsg), NEEP21 (Nsg1), and P19 (Nsg2). NEEP21/Nsg1 plays a role in the trafficking of multiple receptors, including the cell adhesion molecule L1/NgCAM, the neurotransmitter receptor GluA2, and β‐APP. Recently, we showed that NEEP2/Nsg1 and P19/Nsg2 are not expressed in all neuronal cell types in vitro. However, it is not known where and when NEEP21/Nsg1 and P19/Nsg2 are expressed in vivo, and whether both proteins are always coexpressed. Here, we show that NEEP21/Nsg1 and P19/Nsg2 are present in both overlapping and distinct cell populations in the hippocampus, neocortex, and cerebellum during development. NEEP21/Nsg1 and P19/Nsg2 levels are highest during embryonic development, and expression persists in the juvenile mouse brain. In particular, a subset of layer V cortical neurons retains relatively high expression of both NEEP21/Nsg1 and P19/Nsg2 at postnatal day 16 as well as in the CA1‐3 regions of the hippocampus. In the cerebellum, NEEP21/Nsg1 expression becomes largely restricted to Purkinje neurons in adulthood whereas P19/Nsg2 expression strikingly disappears from the cerebellum with age. This divergent and restricted expression likely reflects differential needs for this class of trafficking regulators in different neurons during different stages of maturation.  相似文献   

2.
Cerebellins are secreted hexameric proteins that form tripartite complexes with the presynaptic cell‐adhesion molecules neurexins or ‘deleted‐in‐colorectal‐cancer’, and the postsynaptic glutamate‐receptor‐related proteins GluD1 and GluD2. These tripartite complexes are thought to regulate synapses. However, cerebellins are expressed in multiple isoforms whose relative distributions and overall functions are not understood. Three of the four cerebellins, Cbln1, Cbln2, and Cbln4, autonomously assemble into homohexamers, whereas the Cbln3 requires Cbln1 for assembly and secretion. Here, we show that Cbln1, Cbln2, and Cbln4 are abundantly expressed in nearly all brain regions, but exhibit strikingly different expression patterns and developmental dynamics. Using newly generated knockin reporter mice for Cbln2 and Cbln4, we find that Cbln2 and Cbln4 are not universally expressed in all neurons, but only in specific subsets of neurons. For example, Cbln2 and Cbln4 are broadly expressed in largely non‐overlapping subpopulations of excitatory cortical neurons, but only sparse expression was observed in excitatory hippocampal neurons of the CA1‐ or CA3‐region. Similarly, Cbln2 and Cbln4 are selectively expressed, respectively, in inhibitory interneurons and excitatory mitral projection neurons of the main olfactory bulb; here, these two classes of neurons form dendrodendritic reciprocal synapses with each other. A few brain regions, such as the nucleus of the lateral olfactory tract, exhibit astoundingly high Cbln2 expression levels. Viewed together, our data show that cerebellins are abundantly expressed in relatively small subsets of neurons, suggesting specific roles restricted to subsets of synapses.  相似文献   

3.
To understand the cellular basis for the neurodevelopmental effects of intrauterine growth restriction (IUGR), we examined the global and regional expression of various cell types within murine (Mus musculus) fetal brain. Our model employed maternal calorie restriction to 50% daily food intake from gestation day 10–19, producing IUGR offspring. Offspring had smaller head sizes with larger head:body ratios indicating a head sparing IUGR effect. IUGR fetuses at embryonic day 19 (E19) had reduced nestin (progenitors), β-III tubulin (immature neurons), Glial fibrillary acidic protein (astrocytes), and O4 (oligodendrocytes) cell lineages via immunofluorescence quantification and a 30% reduction in cortical thickness. No difference was found in Bcl-2 or Bax (apoptosis) between controls and IUGR, though qualitatively, immunoreactivity of doublecortin (migration) and Ki67 (proliferation) was decreased. In the interest of examining a potential therapeutic peptide, we next investigated a novel pro-survival peptide, mouse Humanin (mHN). Ontogeny examination revealed highest mHN expression at E19, diminishing by postnatal day 15 (P15), and nearly absent in adult (3 months). Subanalysis by sex at E19 yielded higher mHN expression among males during fetal life, without significant difference between sexes postnatally. Furthermore, female IUGR mice at E19 had a greater increase in cortical mHN versus the male fetus over their respective controls. We conclude that maternal dietary restriction-associated IUGR interferes with neural progenitors differentiating into the various cellular components populating the cerebral cortex, and reduces cerebral cortical size. mHN expression is developmental stage and sex specific, with IUGR, particularly in the females, adaptively increasing its expression toward mediating a pro-survival approach against nutritional adversity.  相似文献   

4.
5.
Collybistin (CB) is a guanine nucleotide exchange factor selectively localized to γ‐aminobutyric acid (GABA)ergic and glycinergic postsynapses. Active CB interacts with gephyrin, inducing the submembranous clustering and the postsynaptic accumulation of gephyrin, which is a scaffold protein that recruits GABAA receptors (GABAARs) at the postsynapse. CB is expressed with or without a src homology 3 (SH3) domain. We have previously reported the effects on GABAergic synapses of the acute overexpression of CBSH3? or CBSH3+ in cultured hippocampal (HP) neurons. In the present communication, we are studying the effects on GABAergic synapses after chronic in vivo transgenic expression of CB2SH3? or CB2SH3+ in neurons of the adult rat cerebral cortex. The embryonic precursors of these cortical neurons were in utero electroporated with CBSH3? or CBSH3+ DNAs, migrated to the appropriate cortical layer, and became integrated in cortical circuits. The results show that: 1) the strength of inhibitory synapses in vivo can be enhanced by increasing the expression of CB in neurons; and 2) there are significant differences in the results between in vivo and in culture studies. J. Comp. Neurol. 525:1291–1311, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
It has been proposed that the combinatorial expression of γ-protocadherins (Pcdh-γs) and other clustered protocadherins (Pcdhs) provides a code of molecular identity and individuality to neurons, which plays a major role in the establishment of specific synaptic connectivity and formation of neuronal circuits. Particular attention has been directed to the Pcdh-γ family, for which experimental evidence derived from Pcdh-γ-deficient mice shows that they are involved in dendrite self-avoidance, synapse development, dendritic arborization, spine maturation, and prevention of apoptosis of some neurons. Moreover, a triple-mutant mouse deficient in the three C-type members of the Pcdh-γ family (Pcdh-γC3, Pcdh-γC4, and Pcdh-γC5) shows a phenotype similar to the mouse deficient in whole Pcdh-γ family, indicating that the latter is largely due to the absence of C-type Pcdh-γs. The role of each individual C-type Pcdh-γ is not known. We have developed a specific antibody to Pcdh-γC4 to reveal the expression of this protein in the rat brain. The results show that although Pcdh-γC4 is expressed at higher levels in the embryo and earlier postnatal weeks, it is also expressed in the adult rat brain. Pcdh-γC4 is expressed in both neurons and astrocytes. In the adult brain, the regional distribution of Pcdh-γC4 immunoreactivity is similar to that of Pcdh-γC4 mRNA, being highest in the olfactory bulb, dentate gyrus, and cerebellum. Pcdh-γC4 forms puncta that are frequently apposed to glutamatergic and GABAergic synapses. They are also frequently associated with neuron-astrocyte contacts. The results provide new insights into the cell recognition function of Pcdh-γC4 in neurons and astrocytes.  相似文献   

7.
The human early postnatal brain contains late migratory streams of immature interneurons that are directed to cortex and other focal brain regions. However, such migration is not observed in rodent brain, and whether other small animal models capture this aspect of human brain development is unclear. Here, we investigated whether the gyrencephalic ferret cortex possesses human-equivalent postnatal streams of doublecortin positive (DCX+) young neurons. We mapped DCX+ cells in the brains of ferrets at P20 (analogous to human term gestation), P40, P65, and P90. In addition to the rostral migratory stream, we identified three populations of young neurons with migratory morphology at P20 oriented toward: (a) prefrontal cortex, (b) dorsal posterior sigmoid gyrus, and (c) occipital lobe. These three neuronal collections were all present at P20 and became extinguished by P90 (equivalent to human postnatal age 2 years). DCX+ cells in such collections all expressed GAD67, identifying them as interneurons, and they variously expressed the subtype markers SP8 and secretagogin (SCGN). SCGN+ interneurons appeared in thick sections to be oriented from white matter toward multiple cortical regions, and persistent SCGN-expressing cells were observed in cortex. These findings indicate that ferret is a suitable animal model to study the human-relevant process of late postnatal cortical interneuron integration into multiple regions of cortex.  相似文献   

8.
In Bilaterians, commissural neurons project their axons across the midline of the nervous system to target neurons on the opposite side. In mammals, midline crossing at the level of the hindbrain and spinal cord requires the Robo3 receptor which is transiently expressed by all commissural neurons. Unlike other Robo receptors, mammalian Robo3 receptors do not bind Slit ligands and promote midline crossing. Surprisingly, not much is known about Robo3 distribution and mechanism of action in other vertebrate species. Here, we have used whole-mount immunostaining, tissue clearing and light-sheet fluorescent microscopy to study Robo3 expression pattern in embryonic tissue from diverse representatives of amniotes at distinct stages, including squamate (African house snake), birds (chicken, duck, pigeon, ostrich, emu and zebra finch), early postnatal marsupial mammals (fat-tailed dunnart), and eutherian mammals (mouse and human). The analysis of this rich and unique repertoire of amniote specimens reveals conserved features of Robo3 expression in midbrain, hindbrain and spinal cord commissural circuits, which together with subtle but meaningful modifications could account for species-specific evolution of sensory-motor and cognitive capacities. Our results also highlight important differences of precerebellar nuclei development across amniotes.  相似文献   

9.
10.
The amount, quality, and diurnal pattern of sleep change greatly during development. Developmental changes of sleep/wake architecture are in a close relationship to brain development. The fragmentation of wake episodes is one of the salient features in the neonatal period, which is also observed in mature animals and human individuals lacking neuropeptide orexin/hypocretin signaling. This raises the possibility that developmental changes of lateral hypothalamic orexin neurons are relevant to the development of sleep/wake architecture. However, little information is available on morphological and physiological features of developing orexin neurons. To address the cellular basis for maturation of the sleep/wake regulatory system, we investigated the functional development of orexin neurons in the lateral hypothalamus. The anatomical development as well as the changes in the electrophysiological characteristics of orexin neurons was examined from embryonic to postnatal stages in orexin‐EGFP mice. Prepro‐orexin promoter activity was detectable at embryonic day (E) 12.0, followed by expression of orexin A after E14.0. The number of orexin neurons and their membrane capacitance reached similar levels to adults by postnatal day (P) 7, while their membrane potentials, firing rates, and action potential waveforms were developed by P21. The hyperpolarizing effect of serotonin, which is a major inhibitory signal for adult orexin neurons, was detected after E18.0 and matured at P1. These results suggest that the expression of orexin peptides precedes the maturation of electrophysiological activity of orexin neurons. The function of orexin neurons gradually matures by 3 weeks after birth, coinciding with maturation of sleep/wake architecture.  相似文献   

11.
12.
The murine subplate contains some of the earliest generated populations of neurons in the cerebral cortex, which play an important role in the maturation of cortical inhibition. Here we present multiple lines of evidence, that the subplate itself is only very sparsely populated with GABAergic neurons at postnatal day (P)8. We used three different transgenic mouse lines, each of which labels a subset of GABAergic, ganglionic eminence derived neurons. Dlx5/6-eGFP labels the most neurons in cortex (on average 11% of NEUN+ cells across all layers at P8) whereas CGE-derived Lhx6-Cre::Dlx1-Venusfl cells are the sparsest (2% of NEUN+ cells across all layers at P8). There is significant variability in the layer distribution of labeled interneurons, with Dlx5/6-eGFP and Lhx6-Cre::R26R-YFP being expressed most abundantly in Layer 5, whereas CGE-derived Lhx6-Cre::Dlx1-Venusfl cells are least abundant in that layer. All three lines label at most 3% of NEUN+ neurons in the subplate, in contrast to L5, in which up to 30% of neurons are GFP+ in Dlx5/6-eGFP. We assessed all three GABAergic populations for expression of the subplate neuron marker connective tissue growth factor (CTGF). CTGF labels up to two-thirds of NEUN+ cells in the subplate, but was never found to colocalize with labeled GABAergic neurons in any of the three transgenic strains. Despite the GABAergic neuronal population in the subplate being sparse, long-distance axonal connection tracing with carbocyanine dyes revealed that some Gad65-GFP+ subplate cells form long-range axonal projections to the internal capsule or callosum.  相似文献   

13.
14.
Neurokinin B, encoded by the tachykinin3 gene, plays a crucial role in regulating reproduction in mammals via KNDy neurons and interaction with GnRH. Previous work in teleost fishes has focused on hypothalamic tac3 expression for its role in reproduction, but detailed studies on extra-hypothalamic tac3 expression are limited. Here, we identified two tac3 genes in the social African cichlid fish Astatotilapia burtoni, only one of which produces a functional protein containing the signature tachykinin motif. In situ hybridization for tac3a mRNA identified cell populations throughout the brain. Numerous tac3a cells lie in several thalamic and hypothalamic nuclei, including periventricular nucleus of posterior tuberculum, lateral tuberal nucleus (NLT), and nucleus of the lateral recess (NRL). Scattered tac3-expressing cells are also present in telencephalic parts, such as ventral (Vv) and supracomissural (Vs) part of ventral telencephalon. In contrast to other teleosts, tac3 expression was absent from the pituitary. Using double-fluorescent staining, we localized tac3a-expressing cells in relation to GnRH and kisspeptin cells. Although no GnRH-tac3a colabeled cells were observed, dense GnRH fibers surround and potentially synapse with tac3a cells in the preoptic area. Only minimal (<5%) colabeling of tac3a was observed in kiss2 cells. Despite tac3a expression in many nodes of the mesolimbic reward system, it was absent from tyrosine hydroxylase (TH)-expressing cells, but tac3a cells were located in areas with dense TH fibers. The presence of tac3a-expressing cells throughout the brain, including in socially relevant brain regions, suggest more diverse functions beyond regulation of reproductive physiology that may be conserved across vertebrates.  相似文献   

15.
Cholinergic transmission shapes the maturation of glutamatergic circuits, yet the developmental sources of acetylcholine have not been systematically explored. Here, we have used Cre-recombinase-mediated genetic labeling to identify and map both mature and developing CNS neurons that express choline acetyltransferase (ChAT). Correction of a significant problem with a widely used ChatCre transgenic line ensures that this map does not contain expression artifacts. ChatCre marks all known cholinergic systems in the adult brain, but also identifies several brain areas not usually regarded as cholinergic, including specific thalamic and hypothalamic neurons, the subiculum, the lateral parabrachial nucleus, the cuneate/gracilis nuclei, and the pontocerebellar system. This ChatCre fate map suggests transient developmental expression of a cholinergic phenotype in areas important for cognition, motor control, and respiration. We therefore examined expression of ChAT and the vesicular acetylcholine transporter in the embryonic and early postnatal brain to determine the developmental timing of this transient cholinergic phenotype, and found that it mirrored the establishment of relevant glutamatergic projection pathways. We then used an intersectional genetic strategy combining ChatCre with Vglut2Flp to show that these neurons adopt a glutamatergic fate in the adult brain. The transient cholinergic phenotype of these glutamatergic neurons suggests a homosynaptic source of acetylcholine for the maturation of developing glutamatergic synapses. These findings thus define critical windows during which specific glutamatergic circuits may be vulnerable to disruption by nicotine in utero, and suggest new mechanisms for pediatric disorders associated with maternal smoking, such as sudden infant death syndrome.  相似文献   

16.
The transplantation of dopaminergic (DA) progenitors derived from pluripotent stem cells improves the behavior of Parkinson's disease model animals. However, the survival of DA progenitors is low, and the final yield of DA neurons is only approximately 0.3%–2% the number of transplanted cells. Zonisamide (ZNS) increases the number of survived DA neurons upon the transplantation of mouse-induced pluripotent stem (iPS) cell-derived DA progenitors in the rat striatum. In this study, we induced DA progenitors from human iPS cells and transplanted them into the striatum of female rats with daily administration of ZNS. The number of survived DA neurons was evaluated 1 and 4 months after transplantation by immunohistochemistry, which revealed that the number of survived DA neurons was significantly increased with the administration of ZNS. To assess the mechanism of action of ZNS, we performed a gene expression analysis to compare the gene expression profiles in striatum treated with or without ZNS. The analysis revealed that the expression of SLIT-and NTRK-like protein 6 (SLITRK6) was upregulated in rat striatum treated with ZNS. In conclusion, ZNS promotes the survival of DA neurons after the transplantation of human-iPS cell-derived DA progenitors in the rat striatum. SLITRK6 is suggested to be involved in this supportive effect of ZNS by modulating the environment of the host brain.  相似文献   

17.
Excitatory amino acid transporter 5 (EAAT5) is a protein that is known to be alternately spliced and to be abundantly expressed in the retina by populations of neurons including photoreceptors and bipolar cells. EAAT5 acts as a slow glutamate transporter and also as glutamate-gated chloride channel, the chloride conductance being large enough for EAAT5 to serve functionally as an “inhibitory” glutamate receptor. However, there has been a long-standing view that the classically spliced form of EAAT5 is not abundant or widespread in the brain and so it has not been extensively investigated in the literature. We recently identified a human-specific splicing form of EAAT5 that was not expressed by rodents but was shown to be a functional glutamate transporter. We have examined the expression of this form of EAAT5, hEAAT5v at the mRNA, and protein level in human brain, and show that populations of human cortical pyramidal neurons and cerebellar Purkinje cells show significant expression of hEAAT5v. Accordingly, we infer that EAAT5 may well be a player in modulating neuronal function in the human brain and propose that its localization in both glutamatergic and GABAergic neurons could be compatible with a role in influencing intracellular chloride and thereby neuronal parameters such as membrane potential rather than acting as a presynaptic glutamate transporter.  相似文献   

18.
19.
The corticospinal (CS) neurons projecting to the cervical cord distribute not only in motor-related cortical areas, but also in somatosensory areas, including the primary somatosensory cortex (S1). The exact functions of these widely distributed CS neurons are largely unknown, however. In this study, we injected mice with adeno-associated virus encoding membrane-binding fluorescent proteins to investigate the distribution of axons from CS neurons in different regions within a broad cortical area. We found that CS axons from the primary motor cortex (M1), the rostral part of S1 (S1r), and the caudal part of S1 (S1c) differentially project to specific compartments within the spinal gray matter of the seventh cervical cord segment: (a) M1 projects mainly to intermediate and ventral areas, (b) S1r to the mediodorsal area, and (c) S1c to the dorsolateral area. We also found that the projection from S1r, which corresponds to the forelimb area, largely overlaps the cutaneous afferent terminals from the forepaw (hand) in the dorsal horn, and we detected a similar relation between S1c and the trunk. Our findings suggest the existence of considerably fine somatotopic compartments within the dorsal horn that process somatosensation and descending information, which is provided mainly by S1 CS neurons and contribute to delicate control of sensory information in generation of movement.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号