首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 149 毫秒
1.
目的 比较不同体型指数对肝脏CT门(静)脉成像的影响,探讨对比剂剂量估算的优化方法.方法 回顾分析72例行上腹部CT检查患者的病例资料.所有患者均注射相同剂量的对比剂.采用线性回归分析门脉期图像的门脉-肝实质对比度和肝实质增强与体重、体表面积(BSA)和体重指数(BMI)的关系,并计算根据不同体型指数估算对比剂剂量时,增强每增加1 HU所需碘投放量(EU).结果 门脉-肝实质对比度与BSA、体重和BMI的相关性(r分别为-0.53、-0.50、-0.41,P<0.001)依次递减.按体重和BSA估算对比剂剂量的平均碘投放量增强比EUBW和EUBSA分别为0.01005 gI/kg/HU和0.36299 gI/m2/HU.结论 为了提高患者间门脉增强的一致性,应根据BSA估算对比剂剂量.  相似文献   

2.
肝硬化患者门静脉期图像:对比剂剂量及扫描时间的影响   总被引:1,自引:0,他引:1  
目的 探讨对比剂剂量及扫描时间对肝硬化患者门静脉期图像质量的影响.资料与方法 60例临床确诊的肝硬化患者随机分为3组:常规剂量常规扫描组(A)、大剂量常规扫描组(B)和大剂量延迟扫描组(C),每组20例;20例年龄相匹配的非肝硬化患者作为对照组.A组、对照组对比剂剂量1.5 ml/kg体重,B组、C组剂量为2.5 ml/kg体重,注射流率均为3.5 ml/s,A、B组及对照组门静脉期扫描时间为60 s,C组门静脉期扫描时间为70 s.测量门静脉、肝实质及肝静脉的CT值,并对图像质量进行双盲目测评分.结果 A、B、C组及对照组门静脉CT值分别为(142.16±15.25)HU、(168.29±14.63)Hu、(151.42±11.96)Hu和(187.73±9.45)HU;肝实质cT值分别为(87.91±11.16)HU、(98.75±10.86)HU、(93.43±11.48)HU和(109.20±5.79)HU;肝静脉CT值分别为(121.09±16.78)HU、(130.54±15.31)HU、(136.92±17.53)HU和(160.55±14.27)HU.肝硬化组门静脉、肝实质、肝静脉CT值及门静脉、肝静脉与肝实质之间的CT值差值均低于对照组(P<0.05),B组门静脉密度高于A组和C组(P<0.05),B组肝实质密度较A组和C组增高,但和C组间差别没有显著性(P>0.05).C组相对于A组肝静脉CT值显著增加,同时肝实质密度轻度降低,两者差值明显提高(P<0.05),C组图像质量评分高于A组及B组(P<0.05).结论 肝硬化患者多期增强扫描应增大对比剂剂量,门静脉期扫描时间应适当延迟.  相似文献   

3.
目的通过MR血管成像(MRA)测量主动脉-肠系膜上动脉夹角(AMA),并评估其与体重指数(BMI)的相关性。资料与方法行腹部MRI检查的605例非肠系膜上动脉综合征(SMAS)患者,按照性别及BMI各分成4个级别(Ⅰ级:BMI<18.5kg/m2;Ⅱ级:BMI18.5~24.9kg/m2;Ⅲ级:BMI25~29.9kg/m2;Ⅳ级:BMI≥30kg/m2)。于三维对比增强MRA(3D-CE-MRA)序列最大密度投影(MIP)矢状面重组图像上测量AMA,分析不同性别患者AMA与BMI、BMI分级之间的相关性。结果男女组AMA与BMI均呈显著正相关(r=0.51、0.54,P<0.01),AMA与BMI分级均呈中等相关(r=0.40、0.43,P<0.01)。随BMI增加,AMA增大。结论通过3D-CE-MRA测量的AMA和BMI显著相关,可以为MRA诊断SMAS提供参考值标准。  相似文献   

4.
肝硬化患者16层螺旋CT肝内门静脉成像延迟时间的优化   总被引:2,自引:0,他引:2  
目的探讨优化肝硬化患者16层螺旋CT肝内门静脉成像时间。方法70例正常人与65例肝硬化患者(Child A级30例,Child B级18例,Child C级17例)分别先采用Testbolus技术测定主动脉、门静脉及肝脏实质时间密度曲线,测定主动脉、门静脉及肝实质强化峰值时间;分别记录主动脉、门静脉及肝实质强化峰值时间及CT值。统计处理采用SPSS11.0统计软件包。结果正常人主动脉强化峰值时间与肝硬化患者主动脉强化峰值时间差值之间并无统计学差异(P=0.072),二者主动脉强化峰值之差值间也无统计学差异(P=0.14)。肝硬化患者平均门静脉峰值时间(42.2 s)明显长于正常人(34.5 s,P<0.05)。肝硬化患者门静脉强化峰值(49.9 HU)明显低于正常人(58.0 HU,P<0.05)。正常人与肝硬化患者肝实质强化峰值时间分别为53.9 s和62.5 s(P<0.05),而二者肝实质强化峰值分别为26.6 HU和24.5 HU(P<0.05)。Child B、C级肝硬化患者平均门静脉强化峰值时间(43.8 s)稍长于Child A级肝硬化患者(40.5 s),但二者之间并无统计学差异(P=0.163)。结论在注射速度相同(5 ml/s)的情况下肝硬化患者门静脉强化时间(42.3 s)明显长于正常人(34.4 s),Child B、C级肝硬化患者门静脉强化峰值时间(43.9 s)稍长于Child A级肝硬化患者(40.5 s),但二者之间并无统计学差异。  相似文献   

5.
目的:探讨16层螺旋CT肝脏多期扫描的方法及应用价值。方法:150例疑有肝脏病变的患者行16层螺旋CT多期扫描。层厚7.5mm,螺距1.375,扫描时间0.8s/r,静脉团注对比剂80~120ml,分别延时23~28s、45~50s58~65s行肝动脉期(动脉早期)、门静脉流注期(动脉晚期)和肝静脉期(实质期)扫描,并对图像作回顾性分析,比较增强前后腹主动脉、门静脉、肝静脉的CT值变化和后处理图像显示肝动脉、门静脉、肝静脉的能力。结果:16层螺旋CT肝脏多期扫描,肝脏血管增强后与增强前的密度差在91.9HU以上,VR、MIP、MPR图像上100%显示肝动脉(150/150),门静脉显示率为96.7%(145/150),肝静脉显示率为95.3%(143/150)。5例门静脉显示不清的病例中,3例为肝癌合并肝门区淋巴结转移,1例肝癌合并门静脉癌栓形成,1例为严重肝硬化合并腹水、脾肿大;7例肝静脉显示不清中有5例与门静脉显示不清的5例为相同病例,其余2例为严重肝硬化合并腹水。结论:16层螺旋CT肝脏多期扫描对评估肝脏病变、肝脏血管的正常、变异以及病变对血管的影响有很大帮助,但是对于严重肝硬化门静脉高压、门静脉狭窄、门静脉血栓(包括癌栓)形成的病例,显示门静脉和肝静脉不理想。  相似文献   

6.
目的 探讨肝脏门静脉期双能量扫描线性融合图与非线性融合图在门静脉血管VRT图像中的应用价值.方法 60例临床确诊肝硬化门静脉高压胃底食管静脉曲张的患者,在肝脏CT增强门静脉期行双能量扫描(Sn140/80 kVp),利用80 kVp和140 kVp的2组数据,进行线性融合A组融合比率(M)=0.3, B组M=1.0;非线性融合C组融合中点(c)=150、融合宽度(w)=200, D组c=(CT肝门静脉+CT肝实质)/2、w=(CT肝门静脉-CT肝实质)/2,其中CT肝门静脉和CT肝实质值均在M=0.3时图像上测得.比较4组图像门静脉的CT值、 信噪比(SNR)、对比信噪比(CNR)、门静脉与肝实质CT值差,采用统计学one-way ANOVA检验客观分析.比较4组VRT图像采用统计学Kruskal-Wallis秩和检验,两两比较采用了Mann-Whitney U检验主观分析.结果 4组图像数据中,D组门静脉的SNR、CNR、门静脉与肝实质CT值差(14.36 HU±3.23 HU、9.78 HU±2.39 HU、107.66 HU±21.28 HU),与其他3组比较分值最高,统计学均有显著差异(F=34.94、68.10、162.43,P值均<0.01);4组VRT图像主观评分中,D组得分最高(平均分4.78±0.42),与其他3组比较统计学均有显著差异(P值均<0.01).结论 利用D组的非线性融合技术可提高门静脉成像质量,可在临床实践中推广使用.  相似文献   

7.
64层螺旋CT多期扫描双动脉期诊断小肝癌的价值探讨   总被引:3,自引:1,他引:2  
目的 评估64层螺旋CT双动脉期扫描对小肝癌的诊断价值.方法 23例(25个病灶)小肝癌患者,经64层螺旋CT双动脉期、门静脉期三期增强扫描.采用对比剂追踪触发技术启动动脉早期扫描,触发监测点设为腹腔干层面的降主动脉,触发阈值140 HU,触发后延迟5 s开始动脉早期扫描,延迟20 s开始动脉晚期扫描,动脉早期与动脉晚期扫描分别屏气进行;门静脉期扫描用固定的延迟70 s;每次全肝扫描的时间为4~5 s.测量各期病灶与肝脏(同层面肝实质)的密度差值(取CT值差值的绝对值);分析与统计动脉早期、动脉晚期及门静脉期对病灶的检出率. 结果动脉早期及动脉晚期病灶与肝脏密度差值的差异有显著统计学意义(P<0.01);动脉早期检出率(11个,44.0%)低于动脉晚期(19个,76.0%);双动脉期加门静脉期检出率(25个,100%)高于动脉晚期加门静脉期(21个,84.0%)及动脉早期加门静脉期(15个,60.0%).结论 64层螺旋CT双动脉期及门静脉期多期扫描提高对多血供小肝癌的检出率.  相似文献   

8.
正摘要目的基于总体质量(TBW)或人体体表面积(BSA)测定80 kV CT肝脏成像检测肝转移灶时使肝脏密度增加50 HU的最佳碘剂量(IM)。方法 150例进行80 kV增  相似文献   

9.
目的探讨贝叶斯正则化似然(BPL)重建技术对18F-脱氧葡萄糖(FDG)PET/CT正常组织代谢参数及图像质量的影响。方法回顾性分析2019年3月至2019年6月间烟台毓璜顶医院60例肿瘤患者[男29例,女31例,年龄24~89(60.4±15.2)岁]的PET/CT体部检查数据,将PET图像按照有序子集最大期望值迭代法(OSEM)、飞行时间(TOF)+点扩散函数(PSF)和BPL(β值=350)3种重建技术进行重建,分别于右肺上叶、肝脏右后叶、主动脉根部和腰椎勾画感兴趣体积(VOI),测量VOI代谢参数[包括平均标准摄取值(SUVmean)、最大标准摄取值(SUVmax)、瘦体质量标准摄取值(SUV)峰值(SULpeak)、SUV标准差(SUVSD)],并计算信噪比(SNR),分析SNR变化率(%ΔSNR)与体质指数(BMI)的关系。采用单因素方差分析、最小显著差异t检验和Pearson相关分析数据。结果3种重建技术的正常肺、主动脉、肝脏及腰椎的SUVmean及SULpeak差异均无统计学意义(F值:0.04~1.95,均P>0.05)。BPL组正常肺、主动脉、肝脏和腰椎的SUVmax(1.14±0.82、2.13±0.37、2.95±0.50和2.76±0.87)较TOF+PSF组(1.56±0.61、2.99±0.75、4.32±0.94和4.05±1.48)和OSEM组(1.51±0.67、3.00±0.70、4.45±1.12和3.81±1.06)明显降低(F值:20.59~52.24,均P<0.001);SUVSD(0.13±0.07、0.20±0.05、0.26±0.06和0.38±0.17)较TOF+PSF组(0.24±0.11、0.43±0.11、0.58±0.15和0.67±0.21)和OSEM组(0.21±0.09、0.42±0.10、0.58±0.14和0.63±0.20)也明显降低(F值:24.46~124.95,均P<0.001);而SNR(4.67±1.34、7.74±2.22、8.17±1.77和4.45±1.22)则明显高于TOF+PSF组(2.54±0.72、3.55±0.82、3.77±0.91和2.49±0.69)和OSEM组(2.65±0.64、3.67±0.80、3.75±0.87和2.60±0.67;F值:83.04~247.73,均P<0.001);而TOF+PSF组与OSEM组间比较,代谢参数、SUVSD和SNR差异均无统计学意义(均P>0.05)。BPL重建组SNR随着BMI的增加而增加,且BMI<25 kg/m2和BMI≥30 kg/m2组之间主动脉SNR(7.07±2.21和9.67±2.26)和肝脏SNR(7.75±1.85和9.32±0.70)差异有统计学意义(F值:3.46、4.19,均P<0.05)。BPL重建后,OSEM和TOF+PSF组肺、主动脉、肝脏和腰椎的%ΔSNR与BMI呈正相关(r值:0.042~0.354,均P<0.05)。结论与传统的OSEM及TOF+PSF相比,BPL重建技术在稳定正常本底组织代谢参数的前提下,明显降低图像噪声、提高SNR,能够很大程度改善图像质量,尤其对体质量大的受检者的图像质量的改善更加明显。  相似文献   

10.
目的:探讨利用640层CT肝灌注容积数据对肝硬化患者进行肝血管成像的可行性及其临床应用价值.方法:25例肝功正常(A组)和50例肝硬化患者(B组:Child-Pugh A级25例;C组:Child-Pugh B级25例)行640层CT肝灌注检查,绘制时间-密度曲线(TDC),测量主动脉和门静脉的达峰值时间(TTP)、峰值(PV)及门静脉与肝脏密度差的最大值(P-L).选取主动脉峰值期的容积数据进行肝动脉血管成像;采用P-L值最大的1期及3期容积数据对门静脉进行单期和多期融合成像,并对比两种成像方法的图像质量.结果:三组间主动脉TTP和PV的差异均无统计学意义(P>0.05).肝硬化组门静脉的TTP较对照组长,PV及P-L值下降,3组间差异有统计学意义(P<0.05);进一步两两比较,除A与B组间门脉TTP值的差异无统计学意义外,其余各组间3个参数的差异有统计学意义(P<0.05).3组均可显示肝动脉3级分支.门脉多期融合成像质量优于单期成像(P<0.05),A组可显示3~4级门静脉分支,B和C组可显示1~3级门静脉分支.结论:利用640层CT全肝灌注成像容积数据进行血管成像,能清晰显示肝动脉和门静脉,有助于肝硬化患者临床治疗方案的制订.  相似文献   

11.

Objectives

To determine the optimal iodine mass (IM) to achieve a 50-HU increase in hepatic attenuation for the detection of liver metastasis based on total body weight (TBW) or body surface area (BSA) at 80-kVp computed tomography (CT) imaging of the liver.

Methods

One-hundred and fifty patients who underwent contrast-enhanced CT at 80-kVp were randomised into three groups: 0.5 gI/kg, 0.4 gI/kg and 0.3 gI/kg. Portal venous phase images were evaluated for hepatic parenchymal enhancement (?HU) and visualisation of liver metastasis. Iodine mass per BSA (gI/m2) calculated in individual patients were evaluated.

Results

Mean ?HU for the 0.5 gI/kg group (84.2 HU) was higher than in the 0.4 gI/kg (66.1 HU) and 0.3 gI/kg (53.7 HU) groups (P?<?0.001). Linear correlation equations between ?HU and IM per TBW or BSA are ?HU?=?7.0?+?153.0?×?IM/TBW (r?=?0.73, P?<?0.001) and ?HU?=?11.4?+?4.0?×?IM/BSA (r?=?0.75, P?<?0.001), respectively. The three groups were comparable for the visualisation of hepatic metastases.

Conclusions

The iodine mass to achieve a 50-HU increase in hepatic attenuation at 80-kVp CT was estimated to be 0.28 gI/kg of body weight or 9.6 gI/m2 of body surface area.

Key Points

? Hepatic enhancement is expressed as ?HU?=?7.0?+?153.0?×?IM [g]/TBW [kg]. ? Hepatic enhancement is expressed as ?HU?=?11.4?+?4.0?×?IM [g]/BSA [m 2 ]. ? Essential iodine dose at 80-kVp CT was 0.28 gI/kg or 9.6 gI/m 2 .  相似文献   

12.

Objective

To compare total body weight (TBW), lean body weight (LBW) and body surface area (BSA) for the adjustment of the iodine dose required for contrast-enhanced multi-detector computed tomography (MDCT) of the aorta and the liver.

Methods

One hundred and three patients undergoing MDCT of the abdomen were randomised into three groups: the TBW group receiving 0.6 g iodine/kg of TBW (n?=?33), the LBW group receiving 0.75 g iodine/kg of LBW (n?=?35) and the BSA group receiving 22 g iodine/m2 (n?=?35). ?HU (increases in CT value) per gram of iodine (?HU/g) and adjusted maximum hepatic enhancement (adjusted MHE; ?HU/[g iodine/kg]) correlated with three groups using linear regressions.

Results

Correlation coefficients of ?HU/g were 0.67 (TBW), 0.86 (LBW) and 0.85 (BSA) for the aorta, and 0.74 (TBW), 0.77 (LBW) and 0.84 (BSA) for the liver. Adjusted MHE was constant at 70.2 with LBW and at 2.69 with BSA, but correlated positively with TBW (r?=?0.58, P?<?0.001).

Conclusion

Iodine load may need to be tailored by LBW or BSA in contrast enhanced MDCT of the abdomen. BSA is a simple and feasible index for the determination of iodine dose in individual patients.

Key Points

? Optimisation of enhancement is very important for high quality MDCT. ? Iodine dose is best adjusted according to LBW or BSA. ? BSA may be adopted because calculation is simple. ? Iodine dose of 0.712 g/kg LBW/18.6 g/m 2 BSA gives 50 HU hepatic enhancement.  相似文献   

13.

Purpose

To determine the optimal iodine dose for aortic and hepatic enhancement at MDCT by comparing lean body weight (LBW) with total body weight (TBW).

Materials and methods

This study was approved by our institutional review committee. One hundred and thirty-six patients were randomized into four groups: 550, 650, 750 mg iodine/(kg of LBW) and 600 mgI/(kg of TBW). The aortic and hepatic contrast enhancements (ΔHUs) during the portal venous-phase and variances of ΔHUs were compared.

Results

Mean ΔHUs for 550, 650, 750 mgI/kg LBW and 600 mgI/kg TBW were: 95.1, 109.9, 122.4, and 131.2 HU, respectively, for the aorta. For the liver, 43.1, 55.4, 60.8, and 63.5 HU. Mean ΔHUs increased with iodine dose per kg LBW (p < 0.01), but no significant difference between 750 mgI/kg LBW and 600 mgI/kg TBW groups. Hepatic enhancement increased by ≥50 HU in 94% of patients with 750 mg/kg LBW. Variance of hepatic enhancement was marginally greater in the 600 mgI/kg TBW than in the 550 and 750 mgI/kg LBW.

Conclusion

Hepatic enhancement variation was reduced with iodine doses based on LBW. Iodine dose of 750 mg iodine/kg LBW was appropriate to achieve hepatic enhancement ≥50 HU in 94% of patients.  相似文献   

14.

Purpose

To investigate the validity of determining the contrast medium dose based on body surface area (BSA) for the abdominal contrast-enhanced multi-detector row CT comparing with determining based on body weight (BW).

Materials and methods

Institutional review committee approval was obtained. In this retrospective study, 191 patients those underwent abdominal contrast-enhanced multi-detector row CT were enrolled. All patients received 96 mL of 320 mg I/mL contrast medium at the rate of 3.2 mL. The iodine dose required to enhance 1 HU of the aorta at the arterial phase and that of liver parenchyma at portal venous phase per BSA were calculated (EUBSA) and evaluated the relationship with BSA. Those per BW were also calculated (EUBW) and evaluated. Estimated enhancement values (EEVs) of the aorta and liver parenchyma with two protocols for dose decision based on BSA and BW were calculated and patient-to-patient variability was compared between two protocols using the Levene test.

Results

The mean of EUBSA and EUBW were 0.0621 g I/m2/HU and 0.00178 g I/kg/HU for the aorta, and 0.342 g I/m2/HU and 0.00978 g I/kg/HU for the liver parenchyma, respectively. In the aortic enhancement, EUBSA was almost constant regardless of BSA, and the mean absolute deviation of the EEV with the BSA protocol was significantly lower than that with the BW protocol (P < .001), although there was no significant difference between two protocols in the hepatic parenchymal enhancement (P = .92).

Conclusion

For the aortic enhancement, determining the contrast medium dose based on BSA was considered to improve patient-to-patient enhancement variability.  相似文献   

15.
Ho LM  Nelson RC  Delong DM 《Radiology》2007,243(2):431-437
PURPOSE: To prospectively evaluate the use of lean body weight (LBW) as the main determinant of the volume and rate of contrast material administration during multi-detector row computed tomography of the liver. MATERIALS AND METHODS: This HIPAA-compliant study had institutional review board approval. All patients gave written informed consent. Four protocols were compared. Standard protocol involved 125 mL of iopamidol injected at 4 mL/sec. Total body weight (TBW) protocol involved 0.7 g iodine per kilogram of TBW. Calculated LBW and measured LBW protocols involved 0.86 g of iodine per kilogram and 0.92 g of iodine per kilogram calculated or measured LBW for men and women, respectively. Injection rate used for the three experimental protocols was determined proportionally on the basis of the calculated volume of contrast material. Postcontrast attenuation measurements during portal venous phase were obtained in liver, portal vein, and aorta for each group and were summed for each patient. Patient-to-patient enhancement variability in same group was measured with Levene test. Two-tailed t test was used to compare the three experimental protocols with the standard protocol. RESULTS: Data analysis was performed in 101 patients (25 or 26 patients per group), including 56 men and 45 women (mean age, 53 years). Average summed attenuation values for standard, TBW, calculated LBW, and measured LBW protocols were 419 HU +/- 50 (standard deviation), 443 HU +/- 51, 433 HU +/- 50, and 426 HU +/- 33, respectively (P = not significant for all). Levene test results for summed attenuation data for standard, TBW, calculated LBW, and measured LBW protocols were 40 +/- 29, 38 +/- 33 (P = .83), 35 +/- 35 (P = .56), and 26 +/- 19 (P = .05), respectively. CONCLUSION: By excluding highly variable but poorly perfused adipose tissue from calculation of contrast medium dose, the measured LBW protocol may lessen patient-to-patient enhancement variability while maintaining satisfactory hepatic and vascular enhancement.  相似文献   

16.
IntroductionTo evaluate the effect of sex, age, height, cardiac output (CO), total body weight (TBW), body surface area (BSA), and lean body weight (LBW) on vessel enhancement of the ascending aorta in pediatric chest computed tomography angiography (c-CTA).Materials and MethodsThis retrospective study received institutional review board approval; parental prior informed consent for inclusion was obtained for all patients. All 50 patients were examined using our routine protocol; iodine (600 mg/kg) was the contrast medium (CM). Unenhanced and contrast-enhanced scans were obtained. We calculated the CM volume per vessel enhancement and performed univariate and multivariate linear regression analysis of the relationship between CM volume per vessel enhancement and each of the body parameters.ResultsAll patient characteristics were significantly related to CM volume per vessel enhancement (P < .05). Multivariate linear regression analysis revealed a significant correlation between CM volume per vessel enhancement and TBW, BSA, and LBW, but not the patient sex, age, CO, and height. The LBW model for CM volume per vessel enhancement yielded the highest determination coefficient (R2 = .913) and the lowest Akaike Information Criterion (400.324).ConclusionsOur findings support the delivery of an iodine dose adjusted to the LBW at c-CTA.  相似文献   

17.
OBJECTIVE: The goal of this study was to determine whether iodinated liposomes are a suitable tracer for mice microvessel and liver imaging by preclinical computed tomography (CT). MATERIALS AND METHODS: Iodinated liposomes were evaluated for vessel and liver imaging. A first group of nude mice was imaged by micro-CT after i.v. injection of liposomes at 1 or 2 gI/kg body weight (b.w.) for intervals up to 24 hours. A second group of mice bearing liver micrometastases was imaged after injection of liposomes at 2 gI/kg b.w. for intervals up to 24 hours. RESULTS: Vascular enhancements of 120 +/- 8 and 322 +/- 20 Hounsfield unit (HU) were obtained after injection of liposomes at 1 or 2 gI/kg b.w., respectively. This enhancement decreased with a blood half-life of 135 +/- 10 and 86 +/- 9 minutes, respectively. Liver enhancement of 157 +/- 5 and 235 +/- 23 HU were obtained after injection of iodinated liposomes at 1 and 2 gI/kg b.w., respectively. Liver micrometastases (250 microm) were detectable after injection of iodinated liposomes at 2 gI/kg b.w. CONCLUSIONS: Iodinated liposomes are a suitable contrast agent for vessels and liver imaging by micro-CT allowing clear vascular enhancement and detection of small liver metastases.  相似文献   

18.

Objectives

To compare vascular and parenchymal contrast enhancement in multidetector computed tomography of the liver using two contrast media with different iodine concentration (Iodixanol 320 mgI/mL and Iomeprol 400 mgI/mL) and similar viscosity, using fixed total iodine volume (40 gI) and iodine delivery rate (1.6 gI/s).

Methods

110 patients were prospectively randomized into two groups. Group A received 125 mL of Iodixanol 320 and group B 100 mL of Iomeprol 400.Attenuation values were measured at the level of the aorta, portal vein and liver parenchyma on unenhanced, arterial, portal and equilibrium phases. A non inferiority test was performed on the differences between the two groups. An independent reader evaluated image quality.

Results

The equivalence of the two CM was demonstrated in all measurements. Higher, but not statistically significant, attenuation values were obtained with Iomeprol 400 in the aorta during the arterial phase (305.3 HU versus 288.4 HU; P = 0.32) and with Iodixanol 320 in the liver parenchyma, during both portal (59.8 HU versus 65.5 HU; P = 0.78) and equilibrium (40.4 HU versus 41.8 HU; P = 0.55) phases.

Conclusions

Iodixanol 320 and Iomeprol 400 injected at the same iodine delivery rate (1.6 gI/s) and total iodine load (40 gI) did not provide statistically significant differences in liver parenchymal and vascular contrast enhancement.  相似文献   

19.
中国竞技健美运动员身体成分调查分析   总被引:8,自引:0,他引:8  
目的:研究我国竞技健美运动员身体成分的特点,为我国竞技健美运动的发展及增强国民体质提供研究和实践参考。方法:采用生物电阻抗法,对参加2004年全国健美锦标赛和全国健身先生、健身小姐大赛的168名运动员进行体成分测试,并按照性别、项目以及参赛级别的不同进行统计分析。结果:(1)与成年男子健美组小级别运动员相比,中级别运动员体脂百分比无明显增加(P>0.05),但是瘦体重和体液总量明显增加(P<0.01);与前两者相比,大级别运动员体脂百分比、瘦体重以及体液总量均明显增加(P<0.01)。(2)健身先生组运动员与成年男子健美组中级别运动员相比,体脂百分比无明显变化(P>0.05),但瘦体重和体液总量明显减小(P<0.01)。(3)与成年女子健美组小级别运动员相比,大级别运动员和健身小姐组运动员体脂百分比增加不多(P>0.05),但瘦体重和体液总量明显增加(P<0.05)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号