首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Purpose. This study determines comparative bioavailability of diclofenac sodium lotion compared to an aqueous solution after topical application to viable human skin in vitro. In addition, the difference between a single dose and multiple doses (8 times) was also determined. Methods. An in vitro flow-through diffusion cell system was employed, using radiolabelled diclofenac sodium. Results. Multiple doses of lotion (2 l/cm2 and 5 l/cm2) delivered a total of 40.1 ± 17.6 g and 85.6 ± 41.4 g diclofenac, respectively, at 48 h, compared to only 9.4 ± 2.9 g and 35.7 ± 19.0 g absorbed after topical application of diclofenac as an aqueous solution (P < 0.05). A single dose study showed no statistical difference between diclofenac delivered in lotion or an aqueous solution. Over 48 h the total absorption from lotion was 10.2 ± 6.7 g and 26.2 ± 17.6 g (2 l/cm2 and 5 l/cm2, respectively), compared to 8.3 ± 1.5 g and 12.5 ± 5.7 g from an aqueous solution. Both single doses of lotion and aqueous diclofenac showed decreased diclofenac absorption into the receptor fluid between 12 and 24 h. However, when applied multiple times, absorption from lotion was continually increasing up to 48 h. The total dose accountability ranged from 76.8 ± 8.2% to 110.6 ± 15.1% of the applied dose. Conclusions. Diclofenac lotion exhibited enhanced diclofenac percutaneous absorption rate through human skin (mass, flux and partition coefficient) when applied a multiple number of times and this enhanced absorption was maintained over 48 h. This suggests that a constituent of the lotion (DMSO) will enhance human skin absorption of diclofenac when used in a multi-dose regimen, but not after a single dose.  相似文献   

2.
Summary This study describes a depolarizing action of 5-hydroxytryptamine (5-HT) on rabbit isolated preganglionic cervical sympathetic nerves using an extracellular recording technique. From cumulative concentration-response curves for 5-HT (1 mol/1-1 mmol/1), the mean maximal depolarization was shown to be 277 ± 32 V and EC50 was 9.4 mol/l(6.5–13.6 mol/l, geometric mean, 95% confidence limits, n = 42). The responses to 5-HT displayed marked tachyphylaxis. When cumulative concentration-response curves to 5-HT and 2-methyl-5-HT were determined in the same preparations (n = 4), the mean maximal response to 5-HT was 519 ± 167 V, EC50 32.2 mol/l (8.8–118 mol/l) and the mean maximal response to 2-methyl-5-HT was 317 ± 63 V, EC50 35.1 mol/l (12.9–95.5 mol/l, geometric means, 95 % confidence limits). The action of selective 5-HT antagonists was tested on repeated cumulative concentration-response curves to 5-HT. Neither methiothepin (0.1–1 mol/l, n = 3) nor ketanserin (0.1–1 mol/l, n = 3) had an action on 5-HT responses. The selective 5-HT3 antagonists MDL 72222, ICS 205-930 and SDZ 206–830 were all potent antagonists of the 5-HT depolarizations. The action of these antagonists was quantified by determining the apparent pA2 from the dose ratios and a Schild plot. For MDL 72222 (1 nmol/1-0.1 mol/l), the apparent pA2 was 9.1 ± 0.1 (n = 12), Schild plot: 9.2; for ICS 205–930 (0.1 nmol/l–3 nmol/1), the apparent pA2 was 10.4 ± 0.1 (n = 11), Schild plot 10.3, and for SDZ 206–830 (0.03 nmol/l-1 nmol/1), the apparent pA2 was 11.2 ± 0.1 (n = 12), Schild plot 11.2. 5-HT depolarizations were unaffected by hexamethonium (0.5 mmol/1). 5-HT depolarizations were reduced by superfusion with both Na-free (42 ± 8% of controls, n = 4) and Na/Ca-free media (35 ± 7% of controls, n = 4). It is concluded that 5-HT depolarizations of rabbit preganglionic cervical sympathetic nerve are mediated by 5-HT3 receptors. The data with selective 5-HT3 receptor antagonists suggest that the receptor profile may be more like that for the 5-HT3 receptor on the terminals of sympathetic nerves than that for the 5-HT3 receptor on the soma of superior cervical ganglion cells or on vagal afferent neurones. Send offprint requests to D. I. Wallis at the above address  相似文献   

3.
Summary Dopamine evokes calcium-dependent release of 3H-acetylcholine from superfused rabbit retina labeled in vitro with 3H-choline, through activation of a D-1 dopamine receptor. This study investigates the activation of this receptor by endogenous dopamine and the modulation of the spontaneous and dopamine-evoked release of 3H-acetylcholine from rabbit retina labeled with 3H-choline by GABAergic agonists and antagonists. Endogenous dopamine, released from dopaminergic amacrine neurons by the indirect amines tyramine or D-amphetamine evoked the calcium-dependent release of 3H-acetylcholine from rabbit retina. The release of 3H-acetylcholine elicited by tyramine (10 M) or D-amphetamine (10 M) was attenuated by the selective D-1 antagonist SCH 23390 (0.1 M) and by the dopamine uptake inhibitor nomifensine (3 M). At concentrations of 1 mM and 1 M respectively, GABA and muscimol inhibited the spontaneous release of tritium from rabbit retina labeled in vitro with 3H-choline. Picrotoxin and bicuculline (10 M) increased the spontaneous release of tritium. GABA and the GABA agonist muscimol (0.01–100 M) inhibited in a concentration-dependent manner the release of 3H-acetylcholine elicited by 100 M dopamine with IC50 values of 4.5 M and 0.02 M respectively. The inhibition of dopamine-evoked 3H-acetylcholine release by GABA (10 M) and muscimol (0.1 M) was antagonized by the GABA antagonists bicuculline and picrotoxin. Picrotoxin and bicuculline (10 M) increased the spontaneous release of tritium, and potentiated the release of 3H-acetylcholine evoked by 100 M dopamine consistant with a tonic, inhibitory GABAergic input to the cholinergic amacrine neurons in rabbit retina. Dopamine-evoked acetylcholine release in rabbit retina may be of physiological importance as D-1 dopamine receptor-mediated increases in 3H-acetylcholine release from rabbit retina can be elicited by endogenous dopamine. In addition, activation of GABA receptor sites modulates the spontaneous and dopamine-evoked acetylcholine release from rabbit retina. Send offprint requests to M. L. Dubocovich at the above address  相似文献   

4.
In guinea-pig papillary muscles the positive inotropic effect of flosequinoxan (BTS) starting at 100 mol/1 amounted to 287.6 ± 34.2% at 300 mol/l without any effects on time to peak tension (103.9 ± 2%) and relaxation time (107.1 ± 6.7% of predrug value, respectively). 10 mol/l carbachol attenuated the positive inotropic effect of 300 mol/l to 166.5 ± 11.6% (n = 10). The phosphorylation state of the inhibitory subunit of troponin (TnI) and phospholamban(PLB) in [32P]-labeled guinea-pig ventricular myocytes was increased starting at 100 mol/l amounting to 142.5 ± 12.6% and 130.9 ± 2.2% at 300 mol/l, respectively (n = 5). Furthermore, BTS (300 mol/l) decreased phosphorylase phosphatase activity by 23.1%. It is concluded that the contractile effects of BTS are accompanied by enhanced phosphorylation of regulatory proteins which could in part be due to inhibition of phosphorylase phosphatase activity.  相似文献   

5.
Summary Phorbol 12-myristate 13-acetate (PMA; 0.03, 0.1 and 1.0 mol/l), a protein kinase C activating phorbol ester, significantly enhanced the stimulation-induced (S-I) outflow of radioactivity at 5 Hz stimulation in mouse atria preincubated with [3H]-noradrenaline, whereas a phorbol ester which does not activate protein kinase C, phorbol 13-acetate (0.1 mol/l), had no effect. This suggests that protein kinase C may have a role in modulating sympathetic neurotransmission.Polymyxin B (7 and 21 mol/l), an inhibitor of protein kinase C, had no effect on the S-I outflow of radioactivity. However, it had a significant inhibitory effect in a concentration of 70 mol/l. Polymyxin B (21 mol/l) reduced the facilitation of the S-I outflow of radioactivity produced by PMA (0.03 mol/l), 8-bromo-cyclic AMP (90 mol/l), tetraethylammonium chloride (300 mol/l), and idazoxan (0.1 mol/l). Furthermore, when a higher frequency of stimulation was applied (10 Hz rather than 5 Hz), polymyxin B (21 pmol/1) by itself inhibited the S-I outflow of radioactivity.In the presence of a concentration of PMA (0.1 mol/l) that was maximally effective in enhancing the S-I outflow of radioactivity, both idazoxan (0.1 mol/l) and 8-bromocyclic AMP (90 mol/l) still enhanced the S-I outflow. This suggests that these agents are not operating through protein kinase C and further suggests that the inhibitory effect of polymyxin B on these agents cannot be due to inhibition of protein kinase C. The effects of clonidine on the S-I outflow were not affected by a maximally effective concentration of PMA (0.1 mol/l). These results suggest that protein kinase C is not involved in a 2-adrenoceptor mediated modulation of noradrenaline release. Send offprint requests to I. F. Musgrave at the above address  相似文献   

6.
In the guinea-pig proximal colon, 5-hydroxytryptamine (5-HT) relaxes the longitudinal muscle by stimulating neuronal 5-HT receptors, which induces the release of nitric oxide (NO). It was investigated whether the inhibitory neurotransmitters adenosine 5-triphosphate (ATP) and/or vasoactive intestinal polypeptide (VIP) could be involved as well.Antagonists to block the contractile response to 5-HT via 5-HT2, 5-HT3 or 5-HT4 receptors were present throughout the experiments and methacholine was administered to precontract the strips. ATP, VIP and 5-HT induced concentration-dependent relaxations, in the case of 5-HT yielding a non-monophasic concentration-response curve. Tetrodotoxin (TTX; 300 nM), NG-nitro-l-arginine (l-NNA, 100 M) and their combination did not inhibit the relaxations induced by VIP (up to 0.3 M) or 0.3–3 M ATP but reduced those by 10 M ATP. Suramin (300 M) strongly inhibited the relaxations to ATP and VIP. l-NNA and suramin also inhibited the relaxations to 5-HT. In the presence of l-NNA (100 M), suramin did not significantly inhibit the relaxations to 5-HT. Suramin did not affect the relaxations to isoprenaline, nitroglycerin or exogenous NO (1 M), demonstrating its specificity. Apamin (30 nM) inhibited both the relaxations to ATP (by 70–100%) and to 5-HT; relaxations to isoprenaline were partially inhibited, indicating a non-specific component in the inhibitory action of apamin. However, relaxations to exogenous VIP (up to 0.3 M), NO (1 ,M) and to nitroglycerin were not inhibit ed. In the presence of l-NNA (100 M), apamin inhibited the relaxations to 5-HT only at 30 M. ,\-methylene-ATP (,-Me-ATP; 100 M) did not desensitize the responses to ATP. Reactive blue 2 affected the relaxations to isoprenaline at concentrations necessary to significantly inhibit the relaxations to ATP (i.e. from 10 M onwards). Thus, it was not possible to test either ,-Me-ATP or reactive blue 2 against the relaxations to 5-HT. -Chymotrypsin (0.015 mg·ml–1) and trypsin (0.005 mg·ml–1) almost abolished the relaxations to VIP, but did not affect those to isoprenaline and 5-HT. The VIP receptor antagonists [p-Cl-d-Phe6, Leu17]VIP (1 M) and VIP10–28 (1 and 3 M) did not affect the concentration-response curve to VIP and were hence not tested against 5-HT. Phosphoramidon (1 M) had no effect on the relaxations to VIP or 5-HT.It can be concluded that in the guinea-pig colon longitudinal muscle, VIP and ATP induce relaxation via a direct effect on the smooth muscle, not involving NO. 5-HT-induced relaxations are mediated by NO as well as by a substance which is sensitive to inhibition by suramin but not apamin. It is suggested that this substance is ATP and not a peptide.  相似文献   

7.
Release of endogenous ATP elicited by electrical (neural) stimulation and exogenous agonists was studied in the rat isolated vas deferens. The aims were to dissect neural and postjunctional contributions to the nerve activity-evoked overflow of ATP and to clarify the role of transmitter receptors and calcium in postjunctional ATP release.In tissues preincubated with [3H]-noradrenaline, electrical stimulation (100 pulses/10 Hz) elicited contraction and an overflow of tritium and ATP. Contractions as well as ATP overflow were reduced by prazosin 0.3 M and even more so by prazosin 0.3 M combined with suramin 300 M. They were also reduced by nifedipine 10 M and even more so by nifedipine 10 M combined with ryanodine 20 M (the additional effect of ryanodine on ATP overflow was not significant). In tissues not pretreated with [3H]-noradrenaline, exogenous noradrenaline 10 M and ,-methylene ATP 10 M elicited contraction and an overflow of ATP. Responses to noradrenaline were blocked by prazosin 0.3 M but not suramin 300 M and were greatly reduced by nifedipine 10 M and in Ca2+-free medium. Responses to ,-methylene ATP were blocked by suramin 300 M but not prazosin 0.3 M were reduced by nifedipine 10 M (effect on ATP overflow not significant) and were reduced even more in Ca2+-free medium. Neuropeptide Y 0.3 M caused only very small contraction and ATP overflow. The electrically as well as the agonist-evoked ATP overflow correlated well with the contraction responses except in experiments with suramin which retarded the removal, by vas deferens tissue, of ATP from the medium.Itsis concluded that the overflow of ATP from rat vas deferens elicited by electrical (neural) stimulation is at least 90% postjunctional, presumably smooth muscle, in origin. ATP is released from postjunctional cells as a consequence of both 1-adrenoceptor and P2-purinoceptor activation. Ca2+ is a second messenger in the postjunctional ATP release response; its major part enters through L-type channels. A purely neural overflow of ATP was not isolated under the conditions of the experiments. Correspondence to: R. Bültmann at the above address  相似文献   

8.
Postganglionic compound action potential (AP) and intracellular NAD(P)H-fluorescence were recorded simultaneously in the perifused superior cervical ganglion of the rat (SCG) to study the effects of the bispyridinium oximes HGG12, HGG42 and obidoxime.HGG12 and HGG42 inhibit the compound action potential (AP) (ID50: 70 M) and the reductive part of NAD(P)H changes (ID50: 75 M) recorded upon stimulation of the SCG, while obidoxime has no ganglion blocking effects in concentrations up to 1 mM.The effects of inhibitors of cholinergic transmission were also studied in order to understand the mechanism of action of the oximes. Hexamethonium (C6) and atropine, competitive inhibitors of receptors of nicotinic and muscarinic cholinergic transmission respectively, were found to block synaptic transmission (C6 ID50: 150 M, atropine ID50: 70 M) and the reductive part of the NAD(P)H response (C6 ID50: 70 M, atropine ID50: 50 M) in a quantitatively similar way.Comparison of the ganglionic action of HGG12 and HGG42 with that of the inhibitory agents characterises them as inhibitors of receptors of nicotinic ganglionic transmission. Furthermore at concentrations of about 10 M, HGG12 behaves like atropine and leads to an increase in AP and reductive fluorescence response. It is therefore probable that HGG12 has in addition an affinity for ganglionic muscarinic receptors which HGG42 does not have.Abreviations SCG superior cervical ganglion - AP fast postganglionic action potential - pAP action potential of presynaptic nerve endings - EPSP excitatory postsynaptic potential - mR metabolic response as indicated by the change of NAD(P)H-fluorescence after electrical stimulation - C6 hexamethonium bromide - OP organophosphates - ID50 inhibitory concentration for 50% of AP or integrated mR  相似文献   

9.
Summary Whole cell experiments were used to study whether the L-type and the T-type Ca channel in guinea-pig ventricular myocytes are blocked similarly by verapamil and flunarizine. The L-type current is blocked by 5 ol/l verapamil and 5 ol/l flunarizine in a use-dependent way, and block can be relieved by hyperpolarizing pulses in a potential-dependent way. The T-type current is not affected by 10 mol/l verapamil while it is blocked by 10 ol/l flunarizine in a use-dependent way. Verapamil selectively blocks the L-type channel in contrast to flunarizine. Send offprint requests to J. Tytgat at the above address  相似文献   

10.
Summary The antimuscarinic activity of amitriptyline, desipramine, iprindole, mianserin and viloxazine on prejunctional sympathetic nerve endings were compared in the isolated rabbit ear artery. In the presence of cocaine (10 M) and yohimbine (1 M), amitriptyline (0.5–1 M), desipramine (1–3 M) and iprindole (5–10 M), desipramine (1–3 M) and iprindole (5–10 M) produced parallel rightward shifts of the concentration-response curve for the inhibitory effect of carbachol (CCh) on responses to electrical stimulation of the preparation at 3 Hz. Mianserin (3 M) produced some inhibition but altered the slope of the concentration-responses curve to CCh while viloxazine (10 M) produced no inhibition.The depression of tritium efflux by CCh from arteries preincubated in 3H-noradrenaline was inhibited significantly (P<0.05) by amitriptyline (0.1 M) and desipramine (1 M) and not by iprindole (17 M), mianserin (3 M) or viloxazine (10 M). Amitriptyline was 10-fold more active than desipramine and at least 30-fold more active than the other antidepressants as a muscarine receptor blocking drug in this preparation.Thus, mianserin, viloxazine and iprindole exhibit much weaker antimuscarinic activity relative to amitriptyline on prejunctional muscarine receptors on sympathetic nerve endings compared with that observed by others for excitatory muscarine receptors in sympathetic ganglia. The findings support an earlier suggestion that these receptors differ.  相似文献   

11.
Summary In pontine slices of the rat brain, the frequency of spontaneous action potentials of locus coeruleus (LC) neurones was recorded extracellularly. Noradrenaline 0.1–100 mol/l, UK 14,304 0.01–100 nmol/l, [Met5]-enkephalin 1–10,000 nmol/l and [D-Ala2, D-Leu5]enkephalin 0.1–1,000 nmol/l, all depressed the firing rate. Rauwolscine 1 mol/l antagonized the effects of both noradrenaline and UK 14,304, but potentiated the effects of [Met']enkephalin and [D-Ala2, D-Leu5]enkephalin. Idazoxan 1 mol/l acted in a similar manner. Prazosin 1 mol/l did not change the effects of either noradrenaline or [Met5]enkephalin. Naloxone 0.1 mol/l antagonized both [Met']enkephalin and [D-Ala2, D-Leu5]enkephalin, but failed to alter the effects of either noradrenaline or UK 14,304. Rauwolscine, idazoxan and prazosin, all 1 mol/l, as well as naloxone 0.1 mol/l, did not influence the firing rate when given alone. Desipramine 1 mol/l inhibited the discharge of action potentials in a rauwolscine-antagonizable manner. Noradrenaline 10 mol/l produced the same depression of firing, both in the presence of noradrenaline 1 mol/l and [Met5]enkephalin 0.03 mol/l. Likewise, the effect of [Met5]enkephalin 0.3 mol/l was the same, irrespective of whether it was added to a medium containing [Met5]enkephalin 0.03 mol/l or noradrenaline 1 mol/l. The spontaneous activity of LC neurones is inhibited by somatic 2-adrenoceptors and opioid -receptors. We suggest that the two receptors interact with each other at a site located between themselves and not in the subsequent common signal transduction system.Send offprint requests to: P. Illes at the above address  相似文献   

12.
Summary The effect of the phosphodiesterase inhibitor 4-(3-cyclopentyloxy-4-methoxyphenyl)-2-pyrrolidone (ZK 62711) on gastric secretion and the cyclic AMP system of the gastric mucosa was studied in rats and guinea pigs. In rats, 0.03–0.3 moles/kg ZK 62711 i.v. stimulated acid and pepsin secretion in a dose-dependent manner and 0.03 moles/kg i.v. enhanced the effect of histamine. In guinea pigs no reproducible stimulation was found after intravenous injections of ZK 62711. The stimulation of gastric secretion in the rat by 0.3 moles/kg ZK 62711 i.v. was not affected by vagotomy but was totally inhibited by 10 moles/kg cimetidine i.v. The structurally related phosphodiesterase inhibitor, 4-(3-butoxy-4-methoxybenzyl)-2-imidazolidine (Ro 20-1724), at the dose of 3.3 moles/kg i.v. stimulated gastric secretion in anaesthetised rats to a similar extent as 0.3 moles/kg ZK 62711 i.v. The content of cyclic AMP in the rat gastric mucosa in vivo was slightly increased by 10 moles/kg ZK 62711 i.v, whereas lower doses did not change it. Accumulation of cyclic AMP in the rat gastric mucosa by 50 moles/kg histamine i.v. was enhanced by simultaneous injections of 3.3 moles/kg ZK 62711 i.v. In rat gastric tissue slices in vitro 1–50 M ZK 62711 increased the level of cyclic AMP but 100 M histamine had no effect in the absence or presence of ZK 62711. In gastric mucosal slices of the guinea pig 10 and 50 M ZK 62711 increased the cyclic AMP content which effect was inhibited by 100 M cimetidine and enhanced the stimulatory effect of 100 M histamine on cyclic AMP. The activity of soluble cyclic AMP phosphodiesterase was inhibited by ZK 62711 in the rat (IC50=18 M) and guinea pig gastric mucosa (IC50=1.5 M). Adenylate cyclase was not affected in the homogenate of the guinea pig gastric mucosa. The results indicate that the phosphodiesterase inhibitor ZK 62711 which increases cyclic AMP levels in the gastric mucosa in vivo and in vitro, is a potent stimulator of gastric acid secretion.  相似文献   

13.
Summary This study was aimed to differentiate the action of (+)- and (±)-sotalol (10–1000 mol/l) on membrane currents which are active during the repolarization of cardiac action potentials Effects where studied in shortened sheep cardiac Purkinje fibres with the two-microelectrode voltage-clamp technique Action potentials were activated at a frequency of 0.25 Hz and membrane currents at 0.03 Hz or 0.05 Hz in most experiments.Out of the currents investigated the transient outward current (ito) reacted most sensitively to (+)- and (±)-sotalol. Ito-amplitude was decreased on the average to 77% of reference at 10 mol/l and to 53% at 1000 mol/l (+)- or (±)-sotalol. The maximally available ito-current was decreased but the voltage-dependent control of inactivation was left nearly unchanged. The initial inwardly rectifying current (iKi), which propels the last repolarization phase of the action potential and controls resting potential to a large extent was reduced on the average to 93% of reference at 10 mol/l and to 62% at 1000 mol/l (+)- or (±)-sotalol. Time-dependent (delayed) outward current (iK) was on the average not affected by (+)- or (±)-sotalol up to 100 mol/l and was decreased to 84% of reference current under the influence of 1000 mol/l. An initial outward current, which is activated at positive membrane potentials (iinst) was not clearly affected by (+)- or (±)-sotalol at concentrations up to 1000 mol/l Pacemaker current (if) was not influenced by the drugs up to 100 mol/l. Only at 1000 mol/l was the amount of available if-current decreased to 79% of reference. (The potential-dependent control of activation was not affected) Time constants of time-dependent currents ito, iK and if did not change in concentrations up to 1000 mol/l of the drug.Action potential duration increased at (+)- or (±)-sotalol concentrations 10 mol/l and maximal prolongation was achieved at concentrations of 100–300 mol/l Resting potential remained nearly unchanged at these concentrations, but the membranes depolarized at 1000 mol/l. According to our data action potential prolongation in sheep Purkinje fibres under the influence of (+)- and (±)-sotalol correlates to the drug-induced block to ito-current and inwardly rectifying iK1-current.Supported by the Deutsche Forschungsgemeinschaft SFB 242, C 1 Send offprint requests to U. Borchard at the above address  相似文献   

14.
Summary The mechanisms responsible for nerve-mediated, non-adrenergic, non-cholinergic (NANC) relaxation in mucosa-free circular muscle strips from the proximal colon of the guinea-pig were investigated. Electrical field stimulation (EFS, 1–20 Hz, trains of 5 s duration, 100 V, 0.25 ms pulse width) in the presence of atropine (1 mol/l) and guanethidine (3 mol/l) evoked a triphasic motor response consisting of. (a) a primary relaxation, (b) a rebound contraction and (c) a secondary relaxation. These three responses were abolished by tetrodotoxin (1 mol/l). Both apamin (0.01–0.3 mol/l), a known blocker of low conductance, calcium-activated potassium channels in smooth muscles, and L-nitroarginine (L-NOARG) (1–100 mol/l), a known blocker of nitric oxide (NO) synthase, increased the tone of the strips. Maximum effects on tone were observed with 0.1 mol/l apamin (21 ± 3% of KCl-induced contraction) and 30 mol/l L-NOARG (26 ± 4% of KCl response). The combined administration of 0.1 mol/l apamin and 30 mol/l L-NOARG produced an increase in tone (47 ± 5% of KCl response) that was larger than that produced by either compound alone. Neither apamin (0.1 mol/l) nor L-NOARG (30 mol/l) affected the isoprenaline-induced relaxation.Apamin (0.1 mol/l) depressed, but did not abolish, the primary relaxation to EFS at all frequencies without affecting the secondary relaxation. Apamin also enhanced the rebound contraction at a frequency of 1 Hz. L-NOARG (30 mol/l) depressed, but did not abolish, the primary relaxation to EFS at all frequencies, had no effect on the rebound contraction and inhibited the secondary relaxation evoked at frequencies of 1–5 Hz, but not 10–20 Hz. L-arginine (300 mol/l) reversed the effect of L-NOARG on tone and the inhibitory effect on the EFS-evoked relaxation. In the presence of apamin and L-NOARG, the primary relaxation was suppressed at all frequencies; the secondary relaxation was inhibited at 1–5 Hz and unchanged at 10–20 Hz, as observed with L-NOARG alone. We conclude that three distinct mechanisms mediate the NANC relaxation of the circular muscle of the proximal colon of the guinea-pig in response to EFS. One mechanism can be operationally defined as apamin-sensitive and a second as L-NOARG-sensitive, the latter implying a possible role of NO as an inhibitory transmitter. A third NANC inhibitory mechanism, which is apamin- and L-NOARG-resistant, is also suggested.Correspondence to: C. A. Maggi at the above address  相似文献   

15.
The ATP-induced increase in tritium outflow from cultured chick sympathetic neurons prelabelled with [3H]-noradrenaline was investigated.Seven days-old dissociated cell cultures of embryonic paravertebral ganglia, loaded with [3H]-noradrenaline (0.05 M), were superfused in the presence of (+)-oxaprotiline and exposed to ATP, ATP-analogues, or 1,1-dimethyl-4-piperazinium (DMPP) for 2 min. ATP (3 LM-3 mM), 2-methylthio-ATP (3–100 M), as well as DMPP (10 and 100 M) induced a significant overflow of tritium. The EC50-value of ATP was 20 M. Both the ATP-induced and the DMPP-induced tritium overflow was Ca2+-dependent and sensitive to tetrodotoxin (0.3 M) and -conotoxin (0.1 M); in addition, it was inhibited by the 2-adrenoceptor agonist 5-bromo-6-(2-imidazoline-2-ylamino)-quinoxaline (UK-14,304; 1 M). The effects of ATP and DMPP were not additive. The ATP-induced as well as the DMPP-induced overflow of tritium was diminished by the P2-purinoceptor antagonists suramin (300 M) and reactive blue 2 (3 M); in all 4 cases, the inhibition amouted to approximately 40%. The tritium overflow induced by ATP or DMPP was almost abolished by the nicotinic receptor antagonist mecamylamine (10 M) and markedly inhibited by hexamethonium (100 M). Neither ATP nor electrical stimulation caused an overflow of tritium from cultures loaded with [3H]-choline.The results suggest that ATP at molar concentrations induces noradrenaline release from cultured chick sympathetic neurons via an action on a subclass of the nicotinic cholinoceptor.  相似文献   

16.
The aim of this study was to determine whether the calmodulin inhibitors trifluoperazine (TFP) and calmidazolium (CMZ) could decrease the action-potential-evoked release of noradrenaline from mouse isolated atria incubated with [3H]-noradrenaline in support of the hypothesis that calmodulin is involved in neurotransmitter release.TFP (10 M and 30 M) significantly enhanced stimulation-induced (S-1) outflow of radioactivity from mouse atria but had no effect at 1.0 M or 70 M. TFP (70 M) also significantly increased the spontaneous outflow of radioactivity. The facilitatory effect of TFP (10 M) on S-I outflow of radioactivity persisted in either the presence of 3-isobutyl-1-methylxanthine (100 M) or atropine (0.3 M) indicating that this effect of TFP was not mediated through either inhibition of phosphodiesterases or through interference with presynaptic muscarinic receptors, respectively. In the presence of phentolamine, the facilitatory effect of TFP (10 M) on S-I outflow was reduced but there was no effect on S-I outflow at 70 M. However, in the presence of a combination of both phentolamine (l.0 M) and the neuronal uptake blocker desipramine (1.0 M) a significant inhibitory effect of TFP (70 M) on the S-I outflow of radioactivity was observed, indicating that effects of TFP on presynaptic a-adrenoceptors and neuronal uptake had disguised an inhibitory effect on S-1 noradrenaline release. Another inhibitor of the Ca2+-calmodulin complex, calmidazolium (CMZ, 10 M) inhibited the S-1 outflow of radioactivity but had no effect at 1.0 M. However, CMZ (10 M) also induced a concomitant increase in the spontaneous outflow of radioactivity. In the presence of both phentolamine (1.0 M) and desipramine (1.0 M), CMZ (10 M) also decreased S-1 outflow of radioactivity. The spontaneous outflow of radioactivity by calmidazolium (10 M) was mainly attributable to a rise in unmetabolized noradrenaline.Since concentrations of both TFP and CMZ, which inhibited S-1 noradrenaline release, also caused an increase in the spontaneous outflow of radioactivity, it is possible that the inhibitory effects on S-1 noradrenaline release may be secondary to changes in spontaneous outflow. This suggests that these drugs have complex effects on transmitter release dynamics which are perhaps due to multiple roles for calmodulin within the sympathetic nerve terminal. Correspondence to: M. Barrington at the above address  相似文献   

17.
Summary In rabbit jejunal arteries, the membrane potential of single smooth muscle cells decreased on the application of noradrenaline 3 mol/1. LY 171555 1 mol/1 did not change, whereas SKF 38393 10 mol/1 reversed the effect of noradrenaline. When prostaglandin F2 (PGF2) was used to evoke depolarization in the presence of prazosin 0.1 mol/1, rauwolscine 1 mol/1 and propranolol 1 mol/1, both SKF 38393 10 mol/1 and dopamine 10 mol/1 repolarized the membrane. SCH 23390 1 mol/1 antagonized the effects of SKF 38393 10 mol/1 and dopamine 10 mol/1. Thus, the change in membrane potential is mediated by a DA1-recep-tor.  相似文献   

18.
Summary Excitatory junction potentials (e.j.ps) evoked by nerve stimulation with 15 pulses at 1 Hz were recorded from muscle cells of rabbit isolated jejunal arteries. LY 171555 1 mol/l, SKF 38393 10 mol/l, dopamine 10 ol/l and clonidine 0.1 mol/l depressed all e j.ps in the train. The percentage inhibition was inversely related to the number of pulses. S- and R-sulpiride, 10 mol/l, domperidone 1 mol/l, SCH 23390 1 mol/l and rauwolscine 1 mol/l did not change, or even depressed the first e j.ps. Of these compounds only S- and R-sulpiride, 10 mol/l and rauwolscine 1 mol/l facilitated the late e.j.ps. The percentage facilitation increased with the number of pulses until a maximum was reached; rauwolscine 1 ol/l had the largest effect. S- and R-sulpiride, 10 mol/l, as well as domperidone 1 ol/l antagonized the action of LY 171555 1 mol/l. S-Sulpiride was more potent than its R-isomer. SCH 23390 1 mol/l and rauwolscine 1 mol/l blunted the effect of SKF 38393 10 mol/l. Rauwolscine 1 mol/l slightly reduced the inhibition by dopamine 10 mol/l; S-sulpiride 10 mol/l was antagonistic only in the presence of rauwolscine 1 mol/l. When rauwolscine 1 mol/l, prazosin 0.1 mol/l, propranolol 1 mol/l and cocaine 10 mol/l was added to the medium, dopamine 10 mol/l continued to produce the same depression of e j.ps, as in the absence of these compounds. Under such conditions S-sulpiride 10 mol/l also counteracted dopamine 10 gmol/l. Rauwolscine 1 mol/l prevented the effect of clonidine 0.1 mol/l. The antagonists were not absolutely selective against only one type of agonist. We suggest that both presynaptic DA2- and postsynaptic DA1-receptors are present in rabbit jejunal arteries. The activation of either receptor-type may depress the e j.ps. Dopamine interferes with neuroeffector transmission due to 2-adrenoceptor agonist properties; its DA2-effect is unmasked only after 2-adrenoceptor blockade. There was no evidence for a co-transmitter function of dopamine. Send offprint requests to P. Illes at the above address  相似文献   

19.
Purpose. The brain is relatively resistant to folic acid deficiency, indicating specialized transport systems may exist for this vitamin localized within the brain capillary endothelial wall, which makes up the blood-brain barrier (BBB) in vivo. The present studies quantify the BBB transport of [3H]-methyltetrahydrofolic acid (MTFA) in vivo and in isolated human brain capillaries in vitro. Methods. BBB transport of [3H]-MTFA was compared to that of [14C]-sucrose, a plasma volume marker, following either intravenous injection or intracarotid perfusion in anesthetized rats. Competition by 10 M MTFA or 10 M folic acid was examined to determine whether folic acid is also transported by the MTFA uptake system. Results. The BBB permeability-surface area (PS) product of [3H]-MTFA, 1.1± 0.3 L/min/g, was 6-fold greater than that of [14C]-sucrose following intravenous injection. The BBB PS product determined by intracarotid arterial perfusion was not significantly different from the BBB PS product calculated following intravenous injection. A time- and temperature- dependent uptake of [3H]-MTFA in human brain capillaries was observed. The uptake of [3H]-MTFA by either rat brain in vivo or by human brain capillaries in vitro was equally inhibited by 10 M concentrations of either unlabeled MTFA or unlabeled folic acid. Conclusions. (1) A saturable transport system exists at the BBB for folic acid derivatives and since this transport is equally inhibited by either folic acid or MTFA, it is inferred that this transport system is the folic acid receptor, and not the reduced folic acid carrier. (2) The presence of a folate transport system at the BBB may offer an endogenous transport system for brain drug delivery of conjugates of folates and drugs that do not normally cross the BBB in vivo.  相似文献   

20.
Summary The effect of nicotine (1–10 M) and tacrine (9-amino-1,2,3,4-tetrahydroacridine; THA) on stimulation evoked release of [3H]acetylcholine from the rat brain slice preparation preincubated with [3H]choline was investigated.In these preparations, nicotine enhanced while tacrine inhibited evoked [3H]acetylcholine release. These effects were blocked by (+)tubocurarine (1 M) and atropine (0.1 M) respectively. In the presence of idazoxan (0.3 M) plus atropine (0.1 M), nicotine (3 M) continued to enhance evoked [3H]acetylcholine release while the inhibitory effect of tacrine (1 M) on evoked [3H]acetylcholine release was reversed to an enhancement. Under these circumstances the effects of both nicotine and tacrine were blocked by (+)tubocurarine (1 M).These findings demonstrate that tacrine can both inhibit or enhance [3H]acetylcholine release, most likely through its activity as a cholinesterase inhibitor. Under normal circumstances following tacrine the predominant effect of the elevated levels of acetylcholine will be activation of inhibitory presynaptic muscarine receptors on cholinergic nerves and an inhibition of evoked [3H]acetylcholine release. Under conditions where both presynaptic inhibitory muscarine and 2-adrenoceptors are blocked, the elevated levels of acetylcholine produced by tacrine will lead to the activation of facilitatory presynaptic nicotine cholinoceptors on cholinergic nerves and an enhancement of evoked [3H]acetylcholine release. Send offprint requests to R. Loiacono at the above address  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号