首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Solid dispersions of glimepiride, belonging to the sulfonylurea group of antidiabetic drugs, and poly(ester amide) hyperbranched polymers of different chemical compositions were prepared in order to improve glimepiride's poor water solubility. X-ray powder diffraction results show that glimepiride is in noncrystalline form, indicating that drug molecules are molecularly dispersed within the amorphous hyperbranched polymers. Nuclear magnetic resonance spectroscopy and Fourier transform-infrared spectroscopy results reveal the complex formation between the glimepiride drug and the particular hyperbranched polymer, which was confirmed also by quantum chemical calculations. The complex is stabilized by a hydrogen-bond interaction between the NH group of the sulfonylurea segment of glimepiride and the carbonyls of the amide and ester bonds of the hyperbranched polymers. The slightly acidic proton of the NH group of the sulfonylurea segment of glimepiride is also involved in an interaction with the tertiary amino functional groups of the hyperbranched polymer. As a consequence, the loading capacity is higher for the hyperbranched polymer with the tertiary amino groups. Owing to a complex formation between glimepiride and a particular hyperbranched polymer, glimepiride's water solubility and its dissolution rate are considerably improved relative to the pure glimepiride drug.  相似文献   

2.
The present research was aimed at the enhancement of the dissolution rate of atorvastatin calcium by the solid dispersion technique using modified locust bean gum. Solid dispersions (SD) using modified locust bean gum were prepared by the modified solvent evaporation method. Other mixtures were also prepared by physical mixing, co-grinding, and the kneading method. The locust bean gum was subjected to heat for modification. The prepared solid dispersions and other mixtures were evaluated for equilibrium solubility studies, content uniformity, FTIR, DSC, XRD, in vitro drug release, and in vivo pharmacodynamic studies. The equilibrium solubility was enhanced in the solid dispersions (in a drug:polymer ratio of 1:6) and other mixtures such as the co-grinding mixture (CGM) and kneading mixture (KM). Maximum dissolution rate was observed in the solid dispersion batch SD3 (i.e. 50% within 15 min) with maximum drug release after 2 h (80%) out of all solid dispersions. The co-grinding mixture also exhibited a significant enhancement in the dissolution rate among the other mixtures. FTIR studies revealed the absence of drug-polymer interaction in the solid dispersions. Minor shifts in the endothermic peaks of the DSC thermograms of SD3 and CGM indicated slight changes in drug crystallinity. XRD studies further confirmed the results of DSC and FTIR. Topological changes were observed in SEM images of SD3 and CGM. In vivo pharmacodynamic studies indicated an improved efficacy of the optimized batch SD3 as compared to the pure drug at a dose of 3 mg/kg/day. Modified locust bean gum can be a promising carrier for solubility enhancement of poorly water-soluble drugs. The lower viscosity and wetting ability of MLBG, reduction in particle size, and decreased crystallinity of the drug are responsible for the dissolution enhancement of atorvastatin. The co-grinding mixture can be a good alternative to solid dispersions prepared by modified solvent evaporation due to its ease of preparation and significant improvement in dissolution characteristics.  相似文献   

3.
The present work is a comparative study that matches between carriers and techniques used to prepare solid mixtures with glimepiride. The study is directed towards elucidation of the most promising carrier capable of highly improving drug dissolution along with the most successful technique used for drug formulation. Mixtures were tested for drug content and dissolution. The most optimum formulae were characterized by DSC, IR and XRPD. Kinetic treatment of dissolution data was performed for physical and co-ground mixtures, solid dispersions and their adsorbates, triple solid dispersions and their adsorbates, microwave generated or treated solid dispersions. Results revealed that enhancing effect mostly reached maximum with ternary solid dispersion adsorbate (TSDads). The latter technique demonstrated a dramatic increase in drug dissolution rate which was reflected in the shortest half-life for most carriers at variable degrees. The highest dissolution rate was attained with pregelatinized starch and decreased to variable degrees with remaining carriers. Differences were ascribed to chemical nature as well as relative water solubility of carriers. The combined effects of incorporating surfactants, polymers and adsorbents to glimepiride contributed together to improve wetting, reduce crystallinity and caused substantial increase in the surface area which made TSDads the most promising technique for enhancing dissolution of glimepiride.  相似文献   

4.
Preparation of amorphous solid dispersions using polymers is a commonly used formulation strategy for enhancing the solubility of poorly water-soluble drugs. However, often a single polymer may not bring about a significant enhancement in solubility or amorphous stability of a poorly water-soluble drug. This study describes application of a unique and novel binary polymeric blend in preparation of solid dispersions. The objective of this study was to investigate amorphous solid dispersions of glipizide, a BCS class II model drug, in a binary polymeric system of polyvinyl acetate phthalate (PVAP) and hypromellose (hydroxypropyl methylcellulose, HPMC). The solid dispersions were prepared using two different solvent methods: rotary evaporation (rotavap) and fluid bed drug layering on sugar spheres. The performance and physical stability of the dispersions were evaluated with non-sink dissolution testing, powder X-ray diffraction (PXRD), and modulated differential scanning calorimetry (mDSC). PXRD analysis demonstrated an amorphous state for glipizide, and mDSC showed no evidence of phase separation. Non-sink dissolution testing in pH 7.5 phosphate buffer indicated more than twofold increase in apparent solubility of the drug with PVAP–HPMC system. The glipizide solid dispersions demonstrated a high glass transition temperature (T g) and acceptable chemical and physical stability during the stability period irrespective of the manufacturing process. In conclusion, the polymeric blend of PVAP–HPMC offers a unique formulation approach for developing amorphous solid dispersions with the flexibility towards the use of these polymers in different ratios and combined quantities depending on drug properties.  相似文献   

5.
A coprocessing/formulation approach for increasing the solubility of poorly soluble drugs using solid dispersions is presented, whereby the active pharmaceutical ingredients (API) retains its crystalline state. The approach uses a biopolymer naturally produced as dendrimeric nanoparticles that has been surface-modified to act as a solubilizing agent. The solubilizing agent is enabled by hot melt extrusion to produce the solid dispersions. Four APIs, phenytoin (PHT), griseofulvin, ibuprofen, and loratadine were used as model compounds to evaluate solubility enhancement. The rank order in solubility enhancement follows that of the hydrophobicity of the APIs. The APIs remained predominantly crystalline after hot melt extrusion processing. However, APIs with weak crystal structure (ibuprofen and loratadine) underwent measurable crystallinity loss. The solubilizing power of the modified biopolymer increases with increasing hydrophobicity and strength of the crystal structure. The solubility is described in terms of a parallel liquid-phase partition-association. For one API (PHT), solubility enhancement was minimal. The dissimilar behavior of PHT is discussed in terms of the polarity match between the API and the hydrophobic microenvironment in the solubilizing agent. This approach is expected to apply to a large number of poorly soluble drugs, offering a complementary approach to existing processing and formulation drug solubilization methods.  相似文献   

6.
The aim of this study was to increase the solubility of ampelopsin (AMP) in water by two systems: solid dispersions with polyethylene glycol 6000 (PEG 6000) or polyvinylpyrrolidone K-30 (PVP K30) and inclusion complexes with beta-cyclodextrin (BCD) and hydroxypropyl-beta-cyclodextrin (HPBCD). The interaction of AMP with the hydrophilic polymers was evaluated by differential scanning calorimetry (DSC), Fourier transformation-infrared spectroscopy (FTIR), scanning electron microscopy (SEM). The results from DSC, FTIR and SEC analyses of solid dispersions and inclusion complexes showed that AMP might exist as an amorphous state or as a solid solution. On the other hand, the SEM images of the physical mixtures revealed that to some extent the drug was present in a crystalline form. The influence of various factors (pH, temperature, type of polymer, ration of the drug to polymer) on the solubility and dissolution rate of the drug were also evaluated. The solubility and dissolution rates of AMP were significantly increased by solid dispersions and cyclodextrin complexes as well as their physical mixtures. The improvement of solubility using polymers was in the following order: HPBCD approximately BCD>PVP K30>PEG 6000.  相似文献   

7.
Conventional furosemide tablets are practically insoluble in water, have slow onset of action (45-60 min) and poor bioavailability (39-53%), and therefore cannot be given in emergency clinical situations like hypertension or pulmonary edema. So purpose of research was to provide a fast dissolving oral dosage form of furosemide, which can provide quick onset of action by using concept of mixed hydrotropy. Initially solubility of furosemide was determined individually in 4 hydrotropic agents namely urea, sodium acetate, sodium benzoate, sodium citrate at concentration of 10, 20, 30 and 40% w/v solutions using purified water as solvent. Highest solubility was obtained in 40% sodium benzoate solution. Then different combinations of 2, 3 and 4 hydrotropic agents in different ratios were used to determine solubility, so that total concentration of hydrotropic agents was always 40%. Highest solubility was obtained in solution of urea+sodium benzoate+sodium citrate at optimum ratio of 15:20:5. This optimized combination was utilized in preparing solid dispersions by common solvent technique using distilled water as solvent. Solid dispersions were evaluated for flow properties, XRD, DSC, SEM and were also compressed to form tablets. Dissolution studies of conventional and prepared tablets were done using USP Type II apparatus. It was concluded that the concept of mixed hydrotropic solid dispersion is novel, safe and cost-effective technique for enhancing bioavailability of poorly water-soluble drugs by dissolving drug in nonionized form. The magical enhancement in solubility of furosemide is clear indication of its potential to be used in future for other poorly water-soluble drugs in which low bioavailability is major concern.  相似文献   

8.
For the polymeric carriers of solid dispersions, it is important that carriers themselves dissolve quickly and maintain the supersaturated state of amorphous drugs during their dissolution period to improve bioavailability. Amphipathic 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers can be dissolved in water, owing to the extremely high hydrophilicity of the MPC units, and are used as an ideal feeder for drug molecules to form aggregates in aqueous conditions. We synthesized amphipathic MPC copolymers with different hydrophobic side chains and molar ratios of MPC units, and evaluated the effect of the polymers on dissolution rate and supersaturation maintenance of solid dispersions of indomethacin. In most of the water-soluble amphipathic MPC copolymers, “spring-parachute”-like dissolution behavior was observed, where the drug initially became supersaturated followed by slow precipitation. In particular, MPC copolymers with aromatic rings in their side chains or polymers with a high percentage of hydrophobic units remained in a supersaturated state for a longer period. In contrast, urethane groups, which form hydrogen bonds with drug molecules, could also interact with water and were not conducive to maintaining supersaturation. In addition, water solubility of the polymer is important for rapid dissolution.  相似文献   

9.
The poor dissolution characteristics of water-insoluble drugs are a major challenge for pharmaceutical scientists. Reduction of the particle size/increase in the surface area of the drug is a widely used and relatively simple method for increasing dissolution rates. The objective of this study was to improve solubility, release and comparability of dissolution of a poorly soluble drug using two different types of formulations (solid dispersions and microspheres). Hydrochlorothiazide was used as a model drug. The solid dispersions and microspheres were prepared by solvent evaporation method using ethyl cellulose, hydroxypropyl methylcellulose in different drug-to-carrier ratios (1:1, 1:2 w:w). The prepared formulations were evaluated for interaction study by Fourier transform infrared spectroscopy, differential scanning calorimetry, percentage of practical yield, drug loading, surface morphology by scanning electron microscopy, optical microscopy and in-vitro release studies. The results showed no interaction between the drug and polymer, amorphous state of solid dispersions and microspheres, percentage yield of 42.53% to 78.10%, drug content of 99.60 % to 99.64%, good spherical appearance in formulation VI and significant increase in the dissolution rate.  相似文献   

10.
Purpose: Influence of polymers on the polymorphic transition of drugs has received limited attention in the literature. The main objective of this study was to gain an understanding of the influence of polyethylene glycol and povidone on the crystalline modification and subsequently the solubility of carbamazepine in solid dispersions. Methods: The physical state of the drug within the dispersions was determined using DSC and powder X-ray diffractometer. DSC and optical microscopy was used to study the kinetics and morphology of dihydrate formation, respectively. Results: Both the polymeric dispersions showed an improved dissolution profile for carbamazepine. Carbamazepine was present in an amorphous form within the povidone dispersions. In contrast, the PEG dispersions showed the presence of crystalline drug. Higher ratios of drug/PEG resulted in the metastable form I of carbamazepine. Dihydrate formation from both the polymeric dispersions was higher compared with pure carbamazepine. The physical state of the drug and the amount of drug in solution accounted for the higher dihydrate formation from these dispersions. Conclusions: Knowledge of the factors contributing to enhanced solubility is critical to the stability of solid dispersions. Additionally, influence of polymers like povidone on the crystalline transitions of polymorphic drugs may be crucial during its use as a binder in granulation.  相似文献   

11.
Flunarizine is a selective calcium entry blocker poorly water-soluble. In this report, the interactions of this drug with polyvinylpyrrolidone in solid dispersions, prepared according to the dissolution method using methanol as the solvent, have been investigated. For purposes of comparison physical mixtures were prepared by simple mixture and homogeneization of the two pulverized components. Combinations of flunarizine/polyvinylpyrrolidone of the following percentage proportions were prepared: 10/90, 20/80, 30/70, 40/60, 50/50, 60/40 and 80/20 (mean particle size of 0.175 mm). The physicochemical properties of solid dispersions were investigated with X-ray diffraction, infrared spectroscopy, differential scanning calorimetry and solubility in equilibrium. X-ray patterns and differential scanning calorimetry have shown that polyvinylpyrrolidone inhibits the crystallization of flunarizine when percentages drug/polymer are 10/90, 20/80 and 30/70. The infrared spectra suggest that there was no chemical interaction between flunarizine and polyvinylpyrrolidone. Equilibrium solubility studies showed that drug solubility was enhanced as the polymer content increased. In general, the solubility increase was greater in solid dispersions than in physical mixtures and the solubility in equilibrium for solid dispersions and physical mixtures at the same drug/polymer proportion showed significant differences (P < 0.05).  相似文献   

12.
The solubility behavior of solid dispersions of two drugs with similar structures was studied. Valdecoxib (VLB) and etoricoxib (ETB) were used as model drugs, and their solid dispersions were prepared with 1, 2, 5, 10, 15, and 20% w/w poly(vinylpyrrolidone) (PVP) by the quench cooling method. The interactions between the drug and polymer molecules were studied by Fourier transform infrared spectroscopy (FT-IR). The thermodynamic aspects of solubility behavior were studied by plotting van't Hoff plots. Both the drugs showed significant differences in their solubility behavior. In the case of VLB, solubility was found to increase significantly with increasing PVP concentration. ETB however did not show any significant solubility enhancement and was found to have decreased solubility at high PVP concentrations. H-bonding interactions were established between VLB and PVP molecules, while none were observed in ETB-PVP dispersions. Solution thermodynamics of amorphous and crystalline forms of both the drugs were studied by van't Hoff plots. The results obtained showed very high negative value of Gibbs free energy for VLB as compared to ETB, thus demonstrating high spontaneity of VLB solubilization. Entropy of amorphous VLB was found to be highly favorable, while being slightly unfavorable for ETB. From this study H-bonding interactions were found to play a major role in dictating the solubility behavior of these drugs from solid dispersions.  相似文献   

13.
The D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) was used to increase the aqueous solubility and dissolution rate of furosemide. The solid dispersion of furosemide with TPGS was prepared by solvent method using methanol. The aqueous solubility and the dissolution rate of furosemide were rapid and markedly enhanced from the 1:2 furosemide-TPGS solid dispersion. The X-ray diffractometry showed that pure furosemide and furosemide contained within the physical mixture were crystalline in nature, whereas furosemide in the solid dispersion was not in crystalline form. The infrared spectroscopic analysis showed that an interaction, in the solid dispersion, such as an association between the functional groups of furosemide and TPGS might occur in the molecular level. The infrared spectroscopy and differential thermal analysis showed the physicochemical modifications of the furosemide from the solid dispersion. The solid dispersion technique with TPGS provides a promising way to increase the solubility and dissolution rate of poorly soluble drugs.  相似文献   

14.
Solid dispersions in water-soluble carriers have attracted considerable interest as a means of improving the dissolution rate, and hence possibly bioavailability, of a range of hydrophobic drugs. The aim of the present study was to improve the solubility and dissolution rate of a poorly water-soluble drug, Lovastatin, by a solid dispersion technique. Solid dispersions were prepared by using polyethylene glycol 4000 (PEG 4000) and polyvinylpyrrolidone K30 (PVP K30) in different drug-to‐carrier ratios. Dispersions with PEG 4000 were prepared by fusion-cooling and solvent evaporation, whereas dispersions containing PVP K30 were prepared by solvent evaporation technique. These new formulations were characterized in the liquid state by phase solubility studies and in the solid state by differential scanning calorimetry, X-ray powder diffraction, and FT-IR spectroscopy. The aqueous solubility of Lovastatin was favored by the presence of both polymers. The negative values of the Gibbs free energy and enthalpy of transfer explained the spontaneous transfer from pure water to the aqueous polymer environment. Solid-state characterization indicated Lovastatin was present as amorphous material and entrapped in polymer matrix. In contrast to the very slow dissolution rate of pure Lovastatin, the dispersion of the drug in the polymers considerably enhanced the dissolution rate. This can be attributed to improved wettability and dispersibility, as well as decrease of the crystalline and increase of the amorphous fraction of the drug. Solid dispersion prepared with PVP showed the highest improvement in wettability and dissolution rate of Lovastatin. Even physical mixture of Lovastatin prepared with both polymers also showed better dissolution profile than that of pure Lovastatin. Tablets containing solid dispersion prepared with PEG and PVP showed significant improvement in the release profile of Lovastatin compared with tablets containing Lovastatin without PEG or PVP.  相似文献   

15.
Solid dispersions in water-soluble carriers have attracted considerable interest as a means of improving the dissolution rate, and hence possibly bioavailability, of a range of hydrophobic drugs. The aim of the present study was to improve the solubility and dissolution rate of a poorly water-soluble drug, Lovastatin, by a solid dispersion technique. Solid dispersions were prepared by using polyethylene glycol 4000 (PEG 4000) and polyvinylpyrrolidone K30 (PVP K30) in different drug-to-carrier ratios. Dispersions with PEG 4000 were prepared by fusion-cooling and solvent evaporation, whereas dispersions containing PVP K30 were prepared by solvent evaporation technique. These new formulations were characterized in the liquid state by phase solubility studies and in the solid state by differential scanning calorimetry, X-ray powder diffraction, and FT-IR spectroscopy. The aqueous solubility of Lovastatin was favored by the presence of both polymers. The negative values of the Gibbs free energy and enthalpy of transfer explained the spontaneous transfer from pure water to the aqueous polymer environment. Solid-state characterization indicated Lovastatin was present as amorphous material and entrapped in polymer matrix. In contrast to the very slow dissolution rate of pure Lovastatin, the dispersion of the drug in the polymers considerably enhanced the dissolution rate. This can be attributed to improved wettability and dispersibility, as well as decrease of the crystalline and increase of the amorphous fraction of the drug. Solid dispersion prepared with PVP showed the highest improvement in wettability and dissolution rate of Lovastatin. Even physical mixture of Lovastatin prepared with both polymers also showed better dissolution profile than that of pure Lovastatin. Tablets containing solid dispersion prepared with PEG and PVP showed significant improvement in the release profile Lovastatin compared with tablets containing Lovastatin without PEG or PVP.  相似文献   

16.
Purpose  The amorphous form of a drug may provide enhanced solubility, dissolution rate, and bioavailability but will also potentially crystallize over time. Miscible polymeric additives provide a means to increase physical stability. Understanding the miscibility of drug–polymer systems is of interest to optimize the formulation of such systems. The purpose of this work was to develop experimental models which allow for more quantitative estimates of the thermodynamics of mixing amorphous drugs with glassy polymers. Materials and Methods  The thermodynamics of mixing several amorphous drugs with amorphous polymers was estimated by coupling solution theory with experimental data. The entropy of mixing was estimated using Flory–Huggins lattice theory. The enthalpy of mixing and any deviations from the entropy as predicted by Flory–Huggins lattice theory were estimated using two separate experimental techniques; (1) melting point depression of the crystalline drug in the presence of the amorphous polymer was measured using differential scanning calorimetry and (2) determination of the solubility of the drug in 1-ethyl-2-pyrrolidone. The estimated activity coefficient was used to calculate the free energy of mixing of the drugs in the polymers and the corresponding solubility. Results  Mixtures previously reported as miscible showed various degrees of melting point depression while systems reported as immiscible or partially miscible showed little or no melting point depression. The solubility of several compounds in 1-ethyl-2-pyrrolidone predicts that most drugs have a rather low solubility in poly(vinylpyrrolidone). Conclusions  Miscibility of various drugs with polymers can be explored by coupling solution theories with experimental data. These approximations provide insight into the physical stability of drug–polymer mixtures and the thermodynamic driving force for crystallization.  相似文献   

17.
Rajebahadur M  Zia H  Nues A  Lee C 《Drug delivery》2006,13(3):201-206
The objective of our study was to find mechanisms responsible for solubility enhancement of nifedipine in solid dispersions of vitamin E TPGS and/or solutol HS-15. Solid dispersions of nifedipine with selected polymers such as vitamin E TPGS, solutol HS-15, PEG(1,000), and lipocol C-10 of varying drug/polymer ratios were prepared by a fusion method. The solubility enhancement was found to be in the order of vitamin E TPGS > solutol HS-15 > lipocol C-10 > PEG(1,000). Lipocol C-10, with a similar hydrophilic-lipophilic value as vitamin E TPGS, showed a comparable retained solubility enhancement during saturation solubility studies but had lower dissolution profile. Overall, vitamin E TPGS showed the best solubility and dissolution performance, while solutol HS-15 and lipocol C-10 demonstrated moderate solubility enhancements. Solid dispersions of vitamin E TPGS as prepared by microfluidization technique initially showed slightly higher solubility compared with samples prepared by fusion method, but eventually it became the same as the study progressed. However, solid dispersion of solutol HS-15 as prepared by microfluidization demonstrated a significant, sustained increased in solubility over its sample when prepared by fusion method. Based on these results, we concluded that enhanced solubility using vitamin E TPGS and solutol HS-15 resulted from a partial conversion of crystalline drug to the amorphous form, increase in wettability of the drug by water soluble polymers, better separation of drug particles, micellar solubilization of drug by high concentrations of surfactant polymers, and interaction between polymer and drug at the molecular level.  相似文献   

18.
Amorphous solid dispersions (ASDs) are widely utilized in the pharmaceutical industry for bioavailability enhancement of low solubility drugs. The important factors governing the dissolution behavior of these systems are still far from adequately understood. As a consequence, it is of interest to investigate the behavior of these systems during the dissolution process. The purpose of this research was twofold. First, the degree of supersaturation generated upon dissolution as a function of drug-polymer composition was investigated. Second, an investigation was conducted to correlate physical behavior upon dissolution with polymer loading. Felodipine and indomethacin were selected as model drugs and hydroxypropylmethylcellulose (HPMC) and polyvinylpyrrolidone (PVP) were used to form the dispersions. Diffusion and nuclear magnetic resonance spectroscopy experiments revealed that the extent of bulk supersaturation generated on dissolution of the ASD did not depend on the drug-polymer ratio. Interestingly, the maximum supersaturation generated was similar to the predicted amorphous solubility advantage. However, dynamic light scattering measurements revealed that particles on the submicron scale were generated during dissolution of the solid dispersions containing 90% polymer, whereas solid dispersions at a 50% polymer loading did not yield these nanoparticles. The nanoparticles were found to result in anomalous concentration measurements when using in situ ultraviolet spectroscopy. The supersaturation generated upon dissolution of the solid dispersions was maintained for biologically relevant timeframes for the HPMC dispersions, whereas PVP appeared to be a less effective crystallization inhibitor.  相似文献   

19.
固体分散体是改善难溶性药物溶解度最行之有效的策略之一,其中活性药物成分以分子形态、无定形态或微晶形态分散于载体材料中,由于载体是配方最大的组成部分,其特性将在很大程度上影响着固体分散体的稳定性,聚合物是最常用的固体分散体载体,基于此,本文将从聚合物的理化性质及药物与载体的混溶性等方面,讨论聚合物对固体分散体稳定性的影响,有助于载体的合理选择,及固体分散技术研究设计与制备水平的提高。  相似文献   

20.
In this study, the dissolution properties of celecoxib (CX) solid dispersions manufactured from Eudragit 4155F and polyvinylpyrrolidone (PVP) were evaluated. Hot-melt extrusion (HME) technology was used to prepare amorphous solid dispersions of drug/polymer binary systems at different mass ratios. The drug concentrations achieved from the dissolution of PVP and Eudragit 4155F solid dispersions in phosphate buffer, pH 7.4 (PBS 7.4) were significantly greater than the equilibrium solubility of CX (1.58 μg/mL). The degree of supersaturation increased significantly as the polymer concentration within the solid dispersion increased. The maximum drug concentration achieved by PVP solid dispersions did not significantly exceed the apparent solubility of amorphous CX. The predominant mechanism for achieving supersaturated CX concentrations in PBS 7.4 was attributed to stabilization of amorphous CX during dissolution. Conversely, Eudragit 4155F solid dispersions showed significantly greater supersaturated drug solutions particularly at high polymer concentrations. For example, at a drug/polymer ratio of 1:9, a concentration of 100 μg/mL was achieved after 60 min that was stable (no evidence of drug recrystallization) for up to 72 h. This clearly identifies the potential of Eudragit 4155F to act as a solubilizing agent for CX. These findings were in good agreement with the results from solubility performed using PBS 7.4 in which Eudragit 4155F had been predissolved. In these tests, Eudragit 4155F significantly increased the equilibrium solubility of CX. Solution (1)H NMR spectra were used to identify drug/polymer interactions. Deshielding of CX aromatic protons (H-1a and H-1b) containing the sulfonamide group occurred as a result of dissolution of Eudragit 4155F solid dispersions, whereas deshielding of H-1a protons and shielding of H-1b protons occurred as a result of the dissolution of PVP solid dispersions. In principle, it is reasonable to suggest that the different drug/polymer interactions observed give rise to the variation in dissolution observed for the two polymer/drug systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号