首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Different classes of neurons in the CNS utilize endogenous cannabinoids as retrograde messengers to shape afferent activity in a short- and long-lasting fashion. Transient suppression of excitation and inhibition as well as long-term depression or potentiation in many brain regions require endocannabinoids to be released by the postsynaptic neurons and activate presynaptic CB1 receptors. Memory consolidation and/or extinction and habit forming have been suggested as the potential behavioral consequences of endocannabinoid-mediated synaptic modulation. However, endocannabinoids have a dual role: beyond a physiological modulation of synaptic functions, they have been demonstrated to participate in the mechanisms of neuronal protection under circumstances involving excessive excitatory drive, glutamate excitotoxicity, hypoxia-ischemia, which are key features of several neurodegenerative disorders. In this framework, the recent discovery that the endocannabinoid 2-arachidonoyl-glycerol is released by midbrain dopaminergic neurons, under both physiological synaptic activity to modulate afferent inputs and pathological conditions such as ischemia, is particularly interesting for the possible implication of these molecules in brain functions and dysfunctions. Since dopamine dysfunctions underlie diverse neuropsychiatric disorders including schizophrenia, psychoses, and drug addiction, the importance of better understanding the correlation between an unbalanced endocannabinoid signal and the dopamine system is even greater. Additionally, we will review the evidence of the involvement of the endocannabinoid system in the pathogenesis of Parkinson’s disease, where neuroprotective actions of cannabinoid-acting compounds may prove beneficial.The modulation of the endocannabinoid system by pharmacological agents is a valuable target in protection of dopamine neurons against functional abnormalities as well as against their neurodegeneration.Key Words: Dopamine, endocannabinoid, synaptic plasticity, neuroprotection, reward, schizophrenia, Parkinson,s disease.  相似文献   

2.
大麻素系统由内源性大麻素、大麻素受体和内源性大麻素失活系统三部分组成,该系统失衡与多种中枢神经系统和免疫系统疾病有关。内源性大麻素水平是衡量大麻素系统活性的主要指标。内源性大麻素代谢途径的深入研究对揭示大麻素系统生理、病理作用以及设计基于该系统的新型治疗药物至关重要。该文综述内源性大麻素的生物合成、信号转导及其降解过程。  相似文献   

3.
The endocannabinoid system comprises the cannabinoid receptors type 1 (CB1) and type 2 (CB2), their endogenous ligands (endocannabinoids), and the proteins responsible for their biosynthesis and degradation. This ubiquitous signalling system, that has attracted a great deal of scientist interest in the past 15 years, regulates several physiological and pathological functions. In mammals, among other functions, the endocannabinoid is involved in nervous, cardiovascular, metabolic, reproductive and immune functions. Finally, yet importantly, endocannabinoids are known to exert important antiproliferative actions in a great number of tumor cells including breast, brain, skin, thyroid, prostate and colorectal. The following review describes our current knowledge on the effects of two of the most studied endocannabinoids (AEA and 2-AG) on various types of tumor and summarizes the possible mechanism of observed antitumor effects.  相似文献   

4.
Knowledge of the endogenous cannabinoid system has expanded greatly during the past years. After the discovery of the cannabinoid receptors, of their endogenous agonists and of the proteins for their synthesis and inactivation, significant progress has been made towards the understanding of the role of the endocannabinoid system in vital functions. Subsequently, an increasing number of papers has been published on the biochemistry and pharmacology of endocannabinoids. This article overviews the endocannabinoid signalling system with focus on its biochemical aspects. In particular we review the mechanisms for the biosynthesis and inactivation of the endocannabinoids, as well as the various molecular targets for some of the endocannabinoids described so far.  相似文献   

5.
Gertsch J 《Planta medica》2008,74(6):638-650
Since the discovery that endogenous lipid mediators show similar cannabimimetic effects as phytocannabinoids from CANNABIS SATIVA, our knowledge about the endocannabinoid system has rapidly expanded. Today, endocannabinoid action is known to be involved in various diseases, including inflammation and pain. As a consequence, the G-protein coupled cannabinoid receptors, endocannabinoid transport, as well as endocannabinoid metabolizing enzymes represent targets to block or enhance cannabinoid receptor-mediated signalling for therapeutic intervention. Based on the finding that certain endocannabinoid-like fatty acid N-alkylamides from purple coneflower ( ECHINACEA spp.) potently activate CB2 cannabinoid receptors we have focused our interest on plant fatty acid amides (FAAs) and their overall cannabinomodulatory effects. Certain FAAs are also able to partially inhibit the action of fatty acid amide hydrolase (FAAH), which controls the breakdown of endocannabinoids. Intriguingly, plants lack CB receptors and do not synthesize endocannabinoids, but express FAAH homologues capable of metabolizing plant endogenous N-acylethanolamines (NAEs). While the site of action of these NAEs in plants is unknown, endogenous NAEs and arachidonic acid glycerols in animals interact with distinct physiological lipid receptors, including cannabinoid receptors. There is increasing evidence that also plant FAAs other than NAEs can pharmacologically modulate the action of these endogenous lipid signals. The interference of plant FAAs with the animal endocannabinoid system could thus be a fortunate evolutionary cross point with yet unexplored therapeutic potential.  相似文献   

6.
The finding of endogenous ligands for cannabinoid receptors, the endocannabinoids, opened a new era in cannabinoid research. It meant that the biological role of cannabinoid signalling could be finally studied by investigating not only the pharmacological actions subsequent to stimulation of cannabinoid receptors by their agonists, but also how the activity of these receptors was regulated under physiological and pathological conditions by varying levels of the endocannabinoids. This in turn meant that the enzymes catalysing endocannabinoid biosynthesis and inactivation had to be identified and characterized, and that selective inhibitors of these enzymes had to be developed to be used as (1) probes to confirm endocannabinoid involvement in health and disease, and (2) templates for the design of new therapeutic drugs. This chapter summarizes the progress achieved in this direction during the 12 years following the discovery of the first endocannabinoid.  相似文献   

7.
In the relatively short period of time since the discovery of cannabinoid receptors and their endogenous ligands, the endocannabinoids, an intensive research effort has resulted in the identification of agents that affect all aspects of the endocannabinoid system. The cannabinoid(1) receptor antagonist rimonabant is in phase III clinical trials for the treatment of obesity and as an aid to smoking cessation, and cannabinoid(2) receptor agonists are promising in animal models of inflammatory and neuropathic pain. In the present MiniReview, the endocannabinoid system is described from a pharmacological perspective. The main topics covered are: the mechanism of action of cannabinoid(2) receptor agonists; identification of the endocannabinoid(s) involved in retrograde signalling; the elusive mechanism(s) of endocannabinoid uptake; therapeutic possibilities for fatty acid amide hydrolase inhibitors; and the cyclooxygenase-2 and lipoxygenase-derived biologically active metabolites of the endocannabinoids.  相似文献   

8.
The endocannabinoid system modulates many physiological functions by acting on receptors CB1 and CB2. The endocannabinoids are produced only when and where they are needed. They act locally and are immediately metabolised after their action. Overactivation of the endocannabinoid system is observed in obesity, with stimulation of the appetite in the hypothalamus and fat accumulation in the adipocytes with increase of insulin resistance and decrease of adiponectin. Nicotine use overactivates also the endocannabinoid system. CB1 blockade by a specific inhibitor (rimonabant) decreases food intake and weight in animal studies and increases adiponectin and insulin sensitivity. Moreover, rimonabant decreases tobacco dependence. Clinical studies with rimonabant are encouraging.  相似文献   

9.
The endocannabinoid signaling system is composed of the cannabinoid receptors; their endogenous ligands, the endocannabinoids; the enzymes that produce and inactivate the endocannabinoids; and the endocannabinoid transporters. The endocannabinoids are a new family of lipidic signal mediators, which includes amides, esters, and ethers of long-chain polyunsaturated fatty acids. Endocannabinoids signal through the same cell surface receptors that are targeted by Delta(9)-tetrahydrocannabinol (Delta(9)THC), the active principles of cannabis sativa preparations like hashish and marijuana. The biosynthetic pathways for the synthesis and release of endocannabinoids are still rather uncertain. Unlike neurotransmitter molecules that are typically held in vesicles before synaptic release, endocannabinoids are synthesized on demand within the plasma membrane. Once released, they travel in a retrograde direction and transiently suppress presynaptic neurotransmitter release through activation of cannabinoid receptors. The endocannabinoid signaling system is being found to be involved in an increasing number of pathological conditions. In the brain, endocannabinoid signaling is mostly inhibitory and suggests a role for cannabinoids as therapeutic agents in central nervous system (CNS) disease. Their ability to modulate synaptic efficacy has a wide range of functional consequences and provides unique therapeutic possibilities. The present review is focused on new information regarding the endocannabinoid signaling system in the brain. First, the structure, anatomical distribution, and signal transduction mechanisms of cannabinoid receptors are described. Second, the synthetic pathways of endocannabinoids are discussed, along with the putative mechanisms of their release, uptake, and degradation. Finally, the role of the endocannabinoid signaling system in the CNS and its potential as a therapeutic target in various CNS disease conditions, including alcoholism, are discussed.  相似文献   

10.
The medicinal chemistry of agents targeting monoacylglycerol lipase   总被引:1,自引:0,他引:1  
Monoacylglycerol lipase (MAGL) has been recently proposed as the main enzymatic activity responsible for the in vivo hydrolysis of the most abundant endocannabinoid in the brain, the 2-arachidonoylglycerol (2-AG). The endocannabinoids, mainly anandamide (AEA) and 2-AG, are a class of lipid messengers that modulate a broad number of physiological processes both in the central nervous system and in the periphery. To date, AEA has been by far the most studied endocannabinoid, although increasing evidence is pointing out the prominent, and sometimes underestimated, role of 2-AG in the regulation of different functions. Therefore, it is of outmost importance to dissect the specific cellular pathways in which these two endocannabinoids are involved. Nonetheless, little is known about the structural require-ments of MAGL. Here we review the current knowledge on MAGL, with special focus on its structure and catalytic mechanism as the rational basis for the design of potent and selective compounds able to interact with it; the inhibitors that have been described to date, and the therapeutic applications that make MAGL an attractive therapeutic target.  相似文献   

11.
Research into the endocannabinoid signaling system has grown exponentially in recent years following the discovery of cannabinoid receptors (CB) and their endogenous ligands, such as anandamide (AEA) and 2-arachidonoylglycerol (2-AG). Important advances have been made in our understanding of the endocannabinoid signaling system in various aspects of alcoholism, including alcohol-seeking behavior. Alcohol increases the synthesis or impairs the degradation of endocannabinoids, leading to a locally elevated endocannabinoid tone within the brain. Elevated endocannabinoid tone might be expected to result in compensatory down-regulation of CB1 receptors or dampened signal transduction. Following release, endocannabinoids diffuse back to the presynaptic neuron where they act as short-range modulators of synaptic activity by altering neurotransmitter release and synaptic plasticity. Mice treated with the CB1 receptor antagonist SR141716A (rimonabant) or homozygous for a deletion of the CB1 receptor gene exhibit reduced voluntary alcohol intake. CB1 knockout mice also show increased alcohol sensitivity, withdrawal, and reduced conditioned place preference. Conversely, activation of CB1 receptor promotes alcohol intake. Recent studies also suggest that elevated endocannabinoid tone due to impaired degradation contributes to high alcohol preference and self-administration. These effects are reversed by local administration of rimonabant, suggesting the participation of the endocannabinoid signaling system in high alcohol preference and self-administration. These recent advances will be reviewed with an emphasis on the endocannabinoid signaling system for possible therapeutic interventions of alcoholism.  相似文献   

12.
Considerable progress has been made, recently, in understanding the role of the endocannabinoid system in regard to neuroprotection. Endogenous cannabinoids have received increasing attention as potential protective agents in several cases of neuronal injury. The endocannabinoid system is comprised of cannabinoid receptors (CB1 and CB2), their endogenous ligands (endocannabinoids) and proteins responsible for their metabolism. Endocannabinoids serve as retrograde signalling messengers in GABAergic and glutamatergic synapses, as well as modulators of post‐synaptic transmission, interacting with other neurotransmitters, including norepinephrine and dopamine. Furthermore, endocannabinoids modulate neuronal, glial and endothelial cell function and exert neuromodulatory, anti‐excitotoxic, anti‐inflammatory and vasodilatory effects. Physiological stimuli and pathological conditions lead to differential increases in brain endocannabinoids that regulate distinct biological functions. The purpose of this review is to present the available in vivo and in vitro experimental data, up to date, regarding the endocannabinoid system and its role in neuroprotection, as well as its possible therapeutic perspectives. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
14.
As our understanding of the endocannabinoids improves, so does the awareness of their complexity. During pathological states, the levels of these mediators in tissues change, and their effects vary from those of protective endogenous compounds to those of dysregulated signals. These observations led to the discovery of compounds that either prolong the lifespan of endocannabinoids or tone down their action for the potential future treatment of pain, affective and neurodegenerative disorders, gastrointestinal inflammation, obesity and metabolic dysfunctions, cardiovascular conditions and liver diseases. When moving to the clinic, however, the pleiotropic nature of endocannabinoid functions will require careful judgement in the choice of patients and stage of the disorder for treatment.  相似文献   

15.
Stroke is a major cause of morbidity and mortality and follows heart disease and cancer as the third leading cause of death in Western societies [1]. Despite many advances in stroke research and pharmacotherapy, clinical treatment of this debilitating disorder is still inadequate. Recent findings from several laboratories have identified the endocannabinoid signaling pathway, comprised of the endocannabinoid agonist anandamide and its pharmacological targets, CB1 and CB2 cannabinoid receptors and associated anandamide receptors, as a physiological system with capacity to mitigate cardiovascular and cerebrovascular disorders through neuronal and endothelial actions. Variability in experimental stroke models and modes of outcome evaluation, however, have provoked controversy regarding the precise roles of endocannabinoid signals in mediating neural and/or vascular protection versus neurovascular damage. Clinical trials of the CB1 antagonist rimonabant demonstrate that modulation of endocannabinoid signaling during metabolic regulation of vascular disorders can significantly impact clinical outcomes, thus providing strong argument for therapeutic utility of endocannabinoids and/or cannabinoid receptors as targets for therapeutic intervention in cases of stroke and associated vascular disorders. The purpose of this review is to provide updated information from basic science and clinical perspectives on endocannabinoid ligands and their effects in the pathophysiologic genesis of stroke. Particular emphasis will be placed on the endocannabinoids anandamide and 2-arachidonylglycerol and CB1 receptor-mediated mechanisms in the neurovascular unit during stroke pathogenesis. Deficiencies in our knowledge of endocannabinoids in the etiology and pathogenesis of stroke, caveats and limitations of existing studies, and future directions for investigation will be addressed.  相似文献   

16.
In the postnatal brain, endocannabinoids acting as retrograde messengers regulate the function of many synapses. By contrast, the understanding of endocannabinoid functions that regulate fundamental developmental processes such as cell proliferation, migration, differentiation and survival during patterning of the CNS is just beginning to unfold. Increasing the knowledge of basic developmental and signaling principles that are controlled by endocannabinoids will provide important insights into the molecular mechanisms that establish functional neuronal circuits in the brain. Moreover, determining the molecular basis of permanent modifications to cellular structure and intercellular communication imposed by cannabis smoking during pregnancy will provide novel therapeutic targets for alleviating pathogenic changes in affected offspring. Here, we summarize recent findings regarding the ontogeny of the endocannabinoid system in neurons that sculpt the temporal and spatial diversity of cellular functions during CNS development.  相似文献   

17.
The endocannabinoid system as a target for therapeutic drugs   总被引:21,自引:0,他引:21  
Cannabinoid receptors, the molecular targets of the cannabis constituent Delta9-tetrahydrocannabinol, are present throughout the body and are normally bound by a family of endogenous lipids - the endocannabinoids. Release of endocannabinoids is stimulated in a receptor-dependent manner by neurotransmitters and requires the enzymatic cleavage of phospholipid precursors present in the membranes of neurons and other cells. Once released, the endocannabinoids activate cannabinoid receptors on nearby cells and are rapidly inactivated by transport and subsequent enzymatic hydrolysis. These compounds might act near their site of synthesis to serve a variety of regulatory functions, some of which are now beginning to be understood. Recent advances in the biochemistry and pharmacology of the endocannabinoid system in relation to the opportunities that this system offers for the development of novel therapeutic agents will be discussed.  相似文献   

18.
Endocannabinoids in the regulation of appetite and body weight   总被引:4,自引:0,他引:4  
The discovery of cannabinoid receptors, together with the development of selective cannabinoid receptor antagonists, has encouraged a resurgence of cannabinoid pharmacology. With the identification of endogenous agonists, such as anandamide, scientists have sought to uncover the biological role of endocannabinoid systems; initially guided by the long-established actions of cannabis and exogenous cannabinoids such as delta9-tetrahydrocannabinol (THC). In particular, considerable research has examined endocannabinoid involvement in appetite, eating behaviour and body weight regulation. It is now confirmed that endocannabinoids, acting at brain CB1 cannabinoid receptors, stimulate appetite and ingestive behaviours, partly through interactions with more established orexigenic and anorexigenic signals. Key structures such as the nucleus accumbens and hypothalamic nuclei are sensitive sites for the hyperphagic actions of these substances, and endocannabinoid activity in these regions varies in relation to nutritional status and feeding expression. Behavioural studies indicate that endocannabinoids increase eating motivation by enhancing the incentive salience and hedonic evaluation of ingesta. Moreover, there is strong evidence of an endocannabinoid role in energy metabolism and fuel storage. Recent developments point to potential clinical benefits of cannabinoid receptor antagonists in the management of obesity, and of agonists in the treatment of other disorders of eating and body weight regulation.  相似文献   

19.
Cannabis is the most commonly abused illegal drug in the world and its main psychoactive ingredient, delta-9-tetrahydrocannabinol (THC), produces rewarding effects in humans and non-human primates. Over the last several decades, an endogenous system comprised of cannabinoid receptors, endogenous ligands for these receptors and enzymes responsible for the synthesis and degradation of these endogenous cannabinoid ligands has been discovered and partly characterized. Experimental findings strongly suggest a major involvement of the endocannabinoid system in general brain reward functions and drug abuse. First, natural and synthetic cannabinoids and endocannabinoids can produce rewarding effects in humans and laboratory animals. Second, activation or blockade of the endogenous cannabinoid system has been shown to modulate the rewarding effects of non-cannabinoid psychoactive drugs. Third, most abused drugs alter brain levels of endocannabinoids in the brain. In addition to reward functions, the endocannabinoid cannabinoid system appears to be involved in the ability of drugs and drug-related cues to reinstate drug-seeking behavior in animal models of relapse. Altogether, evidence points to the endocannadinoid system as a promising target for the development of medications for the treatment of drug abuse.  相似文献   

20.
The endocannabinoid system: a general view and latest additions   总被引:16,自引:0,他引:16  
After the discovery, in the early 1990s, of specific G-protein-coupled receptors for marijuana's psychoactive principle Delta(9)-tetrahydrocannabinol, the cannabinoid receptors, and of their endogenous agonists, the endocannabinoids, a decade of investigations has greatly enlarged our understanding of this altogether new signalling system. Yet, while the finding of the endocannabinoids resulted in a new effort to reveal the mechanisms regulating their levels in the brain and peripheral organs under physiological and pathological conditions, more endogenous substances with a similar action, and more molecular targets for the previously discovered endogenous ligands, anandamide and 2-arachidonoylglycerol, or for some of their metabolites, were being proposed. As the scenario becomes subsequently more complicated, and the experimental tasks to be accomplished correspondingly more numerous, we briefly review in this article the latest 'additions' to the endocannabinoid system together with earlier breakthroughs that have contributed to our present knowledge of the biochemistry and pharmacology of the endocannabinoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号