首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Van Reeth K  Gregory V  Hay A  Pensaert M 《Vaccine》2003,21(13-14):1375-1381
A novel swine influenza virus, H1N2, circulates in European swine populations together with H1N1 and H3N2 viruses. This study examines whether post-infection immunity to H1N1 and/or H3N2 viruses provides cross-protection against H1N2 infection. Pigs (n=51) were inoculated intranasally with either Sw/Belgium/1/98 (H1N1) or Sw/Flanders/1/98 (H3N2), or with both viruses at a 5-week interval. Control groups were left uninoculated or inoculated with Sw/Gent/7625/99 (H1N2). Four weeks later, all the pigs were challenged intranasally and intratracheally with a high H1N2 virus dose. The challenge control pigs showed typical influenza symptoms, and all had high H1N2 virus titres in the lungs and nasal virus excretion during 6 or 7 days. The H1N2-immune pigs showed total clinical and virological protection. Pigs immune against H1N1 or H3N2 only were not protected against disease and virus replication in the lungs, but virus excretion was 2 days shorter. By contrast, pigs immune against both H1N1 and H3N2 did not show disease and H1N2 virus replication was either undetectable or markedly reduced. Haemagglutination inhibition (HI) and virus neutralisation (VN) tests indicated that cross-protection against H1N2 was probably not mediated by antibodies against the haemagglutinin (HA). Antibodies inhibiting the neuraminidase (NA) of H1N2 were at minimal levels in H3N2 only-immune pigs, but they were consistently found in (H1N1+H3N2)-immune pigs. The immune response against the internal proteins, which are relatively conserved in H1N1, H3N2 and H1N2 viruses, may play a significant role in protection against H1N2. Given the severe challenge model used here, cross-protection against H1N2 could be more pronounced under natural conditions of infection.  相似文献   

2.
The hemagglutination inhibition (HI) assay is used most commonly for the detection of antibodies to influenza viruses. However, for the detection of antibodies to avian influenza viruses of the H5N1 subtype either induced by infection or by vaccination, the HI assay is insensitive. Therefore, the virus neutralization (VN) assay has become the method of choice to detect human serum antibodies directed to these viruses. However, this assay requires a second assay for the detection of residual virus replication, which makes it laborious to perform and less suitable for high throughput testing of large numbers of samples. Here we describe an alternative method for the detection of these antibodies, which is based on the use of reporter viruses that express the green fluorescent protein (GFP) upon infection of target cells. GFP-expressing viruses were generated carrying the HA of a variety of antigenically distinct H5N1 influenza viruses. The method proved easy to perform and could be carried out rapidly. Using a panel of antisera raised against H5N1 influenza viruses, the assay based on GFP expressing viruses was compared with the classical virus neutralization assay and the hemagglutination inhibition assay. In general, the results obtained in these assays correlated well. It was concluded that the assay based on the reporter viruses is an attractive alternative for the classical virus neutralization assay and suitable for large sero-epidemiological studies or for the assessment of vaccine efficacy in clinical trials.  相似文献   

3.
《Vaccine》2016,34(33):3757-3763
Eurasian avian-like H1N1 (EA H1N1) swine influenza viruses are prevalent in pigs in Europe and Asia, but occasionally cause human infection, which raises concern about their pandemic potential. Here, we produced a whole-virus inactivated vaccine with an EA H1N1 strain (A/swine/Guangxi/18/2011, SW/GX/18/11) and evaluated its efficacy against homologous H1N1 and heterologous H1N1 and H1N2 influenza viruses in mice. A strong humoral immune response, which we measured by hemagglutination inhibition (HI) and virus neutralization (VN), was induced in the vaccine-inoculated mice upon challenge. The inactivated SW/GX/18/11 vaccine provided complete protection against challenge with homologous SW/GX/18/11 virus in mice and provided effective protection against challenge with heterologous H1N1 and H1N2 viruses with distinctive genomic combinations. Our findings suggest that this EA H1N1 vaccine can provide protection against both homologous H1N1 and heterologous H1N1 or H1N2 virus infection. As such, it is an excellent vaccine candidate to prevent H1N1 swine influenza.  相似文献   

4.
We used the pig model of influenza to examine the efficacy of an AS03(A)-adjuvanted split H5N1 (A/Indonesia/05/2005) vaccine against challenge with a low pathogenic (LP) H5N1 avian influenza (AI) virus (duck/Minnesota/1525/1981) with only 85% amino acid homology in its HA1. Influenza seronegative pigs were vaccinated twice intramuscularly with adjuvanted vaccine at 3 antigen doses, unadjuvanted vaccine or placebo. All pigs were challenged 4 weeks after the second vaccination and euthanized 2 days later. After 2 vaccinations, all pigs in the adjuvanted vaccine groups had high hemagglutination inhibiting (HI) antibody titers to the vaccine strain (160-640), and lower antibody titers to the A/Vietnam/1194/04 H5N1 strain and to 2 LP H5 viruses with 90-91% amino acid homology to the vaccine strain (20-160). Eight out of 12 pigs had HI titers (10-20) to the challenge virus immediately before challenge. Neuraminidase inhibiting antibodies to the challenge virus were detected in most pigs (7/12) and virus neutralizing antibodies in all pigs. There was no antigen-dose dependent effect on the antibody response among the pigs immunized with adjuvanted H5N1 vaccines. After challenge, these pigs showed a complete clinical protection, reduced lung lesions and a significant protection against virus replication in the respiratory tract. Though the challenge virus showed only moderate replication efficiency in pigs, our study suggests that AS03(A)-adjuvanted H5N1 vaccine may confer a broader protection than generally assumed. The pros and cons of the pig as an H5N1 challenge model are also discussed.  相似文献   

5.
This study investigates the safety, immunogenicity and efficacy of different pox-vector vaccines expressing the haemagglutinin of a highly pathogenic (HP) H5N1 avian influenza virus (AIV) (A/chicken/Indonesia/7/03) in pigs. Pigs were vaccinated twice, with a 4-week interval, with a fowlpox (TROVAC®), a canarypox (ALVAC®), or a vaccinia (NYVAC) vector vaccine combined with an oil-in-water adjuvant, with the unadjuvanted NYVAC, or left unvaccinated. Six weeks after the second vaccination, all pigs were challenged intra-tracheally with low pathogenic (LP) H5N2 AIV A/chicken/Belgium/150/99. Sera were examined in haemagglutination inhibition (HI) tests against the H5N1 AIV from which the vaccine haemagglutinin derived, the challenge virus and the human A/Vietnam/1194/04 HPAIV. After challenge pigs were compared for H5N2 virus replication in the trachea and 4 lung lobes at 24 or 72 h post-challenge. Vaccination was well tolerated by all animals. Antibody titres peaked 2 weeks after the second vaccination and were 2- to 4-fold higher against the vaccine virus than heterologous H5 viruses. The NYVAC and ALVAC adjuvanted vaccines consistently induced higher antibody titres than TROVAC or NYVAC without adjuvant. Following challenge, the H5N2 challenge virus was isolated from all unvaccinated pigs, while 19 out of 21 vaccinates showed complete virological protection. Pox-vector vaccines were safe, immunogenic and efficacious against challenge with a heterologous H5 AIV, offering an alternative to classical inactivated vaccines. It remains to be seen whether they would protect against a swine-adapted H5 virus, which may replicate 100–1000 times better than our challenge virus.  相似文献   

6.
7.
Pearce MB  Belser JA  Houser KV  Katz JM  Tumpey TM 《Vaccine》2011,29(16):2887-2894
In March 2009, a swine origin influenza A (2009 H1N1) virus was introduced into the human population and quickly spread from North America to multiple continents. Human serologic studies suggest that seasonal influenza virus vaccination or infection would provide little cross-reactive serologic immunity to the pandemic 2009 H1N1 virus. However, the efficacy of seasonal influenza infection or vaccination against 2009 H1N1 virus replication and transmission has not been adequately evaluated in vivo. Here, ferrets received one or two doses of the US licensed 2008-2009 live attenuated influenza vaccine (LAIV) intranasally. An additional group of ferrets were inoculated with the A/Brisbane/59/07 (H1N1) virus to model immunity induced by seasonal influenza virus infection. All vaccinated and infected animals possessed high titer homologous hemagglutination-inhibition (HI) and neutralizing antibodies, with no demonstrable cross-reactive antibodies against 2009 H1N1 virus. However, in comparison to non-immune controls, immunized ferrets challenged with pandemic A/Mexico/4482/09 virus displayed a significant reduction in body temperature and virus shedding. The impact of single-dose LAIV inoculation on 2009 H1N1 disease and virus transmission was also measured in vaccinated ferrets that were challenged with pandemic A/Netherlands/1132/09 virus. Although a single dose of LAIV reduced virus shedding and the frequency of transmission following homologous seasonal virus challenge, it failed to reduce respiratory droplet transmission of 2009 H1N1 virus. The results demonstrate that prior immunization with seasonal LAIV or H1N1 virus infection provides some cross-protection against the 2009 H1N1 virus, but had no significant effect on the transmission efficiency of the 2009 H1N1 virus.  相似文献   

8.
Because of the time required to identify and produce an antigenically well-matched pandemic vaccine, vaccines that offer broader cross-reactive immunity and protection are desirable. We have compared a live attenuated influenza vaccine (LAIV) and inactivated influenza vaccine (IIV) based on a related H5 hemagglutinin (HA) from a nonpathogenic avian influenza virus, A/Duck/Pottsdam/1042-6/86 (H5N2), for the ability to induce cross-reactive immunity and/or cross-protective efficacy against a contemporary highly pathogenic H5N1 viruses. Both LAIV and IIV provided cross-protection from systemic infection, severe disease, and death following lethal challenges with antigenically distinct A/Vietnam/1203/2004 (VN/1203) virus. Substantial levels of serum anti-VN/1203 HA IgG were detected in mice that received either IIV or LAIV, while nasal wash anti-VN/1203 HA IgA was detected in mice that received LAIV. Formulation of IIV with alum adjuvant augmented neutralizing antibody responses and protective efficacy. These results demonstrated that vaccination of mice with H5 IIV or LAIV induced a high degree of cross-protection from illness and death following lethal challenges with a heterologous H5N1 virus.  相似文献   

9.
《Vaccine》2019,37(40):5925-5929
Ducks play a key role in the maintenance and spread of avian influenza viruses (AIVs) in nature, and control of AIVs in ducks has important implications for AIV eradication from poultry. We previously constructed a recombinant duck enteritis virus (DEV), rDEVus78HA, that expresses the HA gene of an H5N1 AIV and showed that rDEVus78HA immunization provides complete protection against both DEV and H5N1 AIV challenge in specific-pathogen-free ducks. In this study, we performed a 60-week clinical trial and found that this rDEVus78HA vaccine can function as a bivalent vaccine in farmed ducks against lethal challenge with DEV and H5N1 virus. Moreover, we found that rDEVus78HA-vaccinated ducks were efficiently protected against challenges with recently isolated heterologous H5N6 and H5N8 viruses. Our results demonstrate that rDEVus78HA could be extremely valuable for the control of DEV and H5 AIVs in ducks.  相似文献   

10.
《Vaccine》2022,40(19):2723-2732
Control of swine influenza A virus (swIAV) in North America and Europe is complicated because multiple antigenically distinct swIAV strains co-circulate in the field, and no vaccine is available that can provide broad cross-protection against all these swIAVs. In 2017, the first live attenuated influenza vaccine (LAIV) for swine was licensed in the US. The non-structural protein 1 (NS1)-truncated cluster I H3N2 strain A/swine/Texas/4199-2/98 NS1del126 (TX98 LAIV) in this vaccine provides partial cross-protection against heterologous North American cluster II and IV H3N2 swIAV strains. Its efficacy against European or more recent North American H3N2 lineages remains to be investigated. In this study, we evaluated the level of cross-protection against heterologous IAVs representative of the major H3N2 swIAV lineages in Europe and North America. TX98 LAIV prevented both nasal shedding and replication in the lungs of a North American cluster IV H3N2 swIAV for 2/4 pigs, prevented considerable nasal shedding of a North American novel human-like H3N2 swIAV for 2/4 pigs, and reduced replication of a European H3N2 swIAV in the lower respiratory tract to minimal titers for 1/3 pigs. Although TX98 LAIV elicited neutralizing antibodies against the homologous virus in serum and to a lesser extent in nose and lungs, no significant cross-reactive antibody titers against the heterologous swIAVs were detected. Partial cross-protection therefore likely relies on cellular and mucosal immune responses against conserved parts of the swIAV proteins. Since TX98 LAIV can offer partial protection against a broad range of H3N2 swIAVs, it might be a suitable priming vaccine for use in a heterologous prime-boost vaccination strategy.  相似文献   

11.
Current vaccines for influenza are primarily killed whole virus vaccines that elicit antibody responses to the homologous virus but lack protection against heterologous viruses. Using chickens as a model we have explored the possibility of using a live low pathogenic avian influenza (LPAI) A/goose/AB/223/2005 H1N1 virus as a vaccine to generate protective immunity against heterologous highly pathogenic avian influenza (HPAI) A/chicken/Pensylvania/1370/1983 H5N2 virus challenge. Virus replicated in chickens infected with LPAI H1N1 but did not cause clinical disease. In addition, these chickens developed neutralizing antibodies to LPAI H1N1 virus, but not HPAI H5N2, 21 days post infection (DPI). Furthermore, peripheral blood mononuclear cells from H1N1-infected chickens at 20 DPI had antigen specific proliferation and IFN-γ secretion following antigen stimulation to H5N2 indicating a heterologous HPAI H5N2 specific cell mediated immunity (CMI) following LPAI H1N1 infection. Following challenge with HPAI H5N2 virus, all control chickens developed clinical disease, while chickens previously infected with H1N1 did not develop clinical disease and shed significantly less virus by oral and cloacal routes. These results indicated that previous infection with LPAI virus can generate heterologous CMI capable of protecting against HPAI H5N2.  相似文献   

12.
The gene constellation of the 2009 pandemic A/H1N1 virus is a unique combination from swine influenza A viruses (SIV) of North American and Eurasian lineages, but prior to April 2009 had never before been identified in swine or other species. Although its hemagglutinin gene is related to North American H1 SIV, it is unknown if vaccines currently used in U.S. swine would cross-protect against infection with the pandemic A/H1N1. The objective of this study was to evaluate the efficacy of inactivated vaccines prepared with North American swine influenza viruses as well as an experimental homologous A/H1N1 vaccine to prevent infection and disease from 2009 pandemic A/H1N1. All vaccines tested provided partial protection ranging from reduction of pneumonia lesions to significant reduction in virus replication in the lung and nose. The multivalent vaccines demonstrated partial protection; however, none was able to prevent all nasal shedding or clinical disease. An experimental homologous 2009 A/H1N1 monovalent vaccine provided optimal protection with no virus detected from nose or lung at any time point in addition to amelioration of clinical disease. Based on cross-protection demonstrated with the vaccines evaluated in this study, the U.S. swine herd likely has significant immunity to the 2009 A/H1N1 from prior vaccination or natural exposure. However, consideration should be given for development of monovalent homologous vaccines to best protect the swine population thus limiting shedding and the potential transmission of 2009 A/H1N1 from pigs to people.  相似文献   

13.
Highly pathogenic avian influenza viruses of the H5N1 subtype are responsible for an increasing number of infections in humans since 2003. More than 60% of the infections is lethal and new infections are reported frequently. In the light of the pandemic threat caused by these events the rapid availability of safe and effective vaccines is desirable. Modified vaccinia virus Ankara (MVA) expressing the HA gene of an influenza A/H5N1 virus is a promising candidate vaccine that induced protective immunity against infection with homologous and heterologous influenza A/H5N1 viruses in mice. We also evaluated the recombinant MVA vector expressing the HA of influenza A/H5N1 virus A/Vietnam/1194/04 (MVA-HA-VN/04) in non-human primates. Cynomolgus macaques were immunized twice and then challenged with influenza virus A/Vietnam/1194/04 (clade 1) or A/Indonesia/5/05 (clade 2.1) to assess the level of protective immunity. Immunization with MVA-HA-VN/04 induced (cross-reactive) antibodies and prevented virus replication in the upper and lower respiratory tract and the development of severe necrotizing bronchointerstitial pneumonia. Therefore MVA-HA-VN/04 is a promising vaccine candidate for the induction of protective immunity against highly pathogenic avian influenza A/H5N1 viruses.  相似文献   

14.
《Vaccine》2022,40(48):6998-7008
The current study aimed to develop broadly protective vaccines for avian influenza. In an earlier study, HA stalk (universal flu vaccine) was found to be broadly protective against different subtypes of influenza virus in mice. Hence, we were interested to know its breadth of protective efficacy either alone or combined with inactivated rgH5N2 (clade 2.3.2.1a) vaccine against challenge viruses of homologous H5N1, heterologous H5N8 (clade 2.3.4.4) and heterosubtypic H9N2 virus in specific pathogen-free chickens. The rgH5N2 vaccine alone or in combination with HA stalk elicited sufficient pre-challenge immunity in the form of haemagglutination inhibiting (HI) antibodies and neutralizing antibodies (MNT) against H5N1, H5N8, and H9N2 in chickens. The rgH5N2 vaccine alone or in combination with HA stalk also attenuated the shedding of H5N1, H5N8 and H9N2 in chickens and protected against the lethal challenge of H5N1 or H5N8. In contrast, all HA stalk immunised chickens died upon H5N1 or H5N8 challenge and H9N2 challenged chickens survived. Our study suggests that the rgH5N2 vaccine can provide clinical protection against H5N1, H5N8 and can attenuate the viral shedding of H9N2 in chickens.  相似文献   

15.
目的 分析研究H5N6人禽流感病毒基因组序列特征,明确该病毒的分子进化及生物学特性.方法 从GenBank和GISAI中获取人H5N6分离株全序列,通过软件BioEdit7.0.9对各节段基因与其他相关毒株序列进行比对.用软件Mega 5.0,Neighbor-Joining法绘制血凝素(HA)和神经氨酸酶(NA)基因进化树,并全面分析病毒株的基因组序列特征、病毒进化及来源、传染性、致病性和药物敏感等.结果 H5N6病毒的基因组完全属于禽源特征,根据病毒进化及来源可分为两大类.HA基因都属于H5亚型的2.3.4.4进化支,NA基因都来源于H6N6亚型毒株,属于欧亚谱系.其余6段内部基因分别来自于H9N2亚型或H5亚型2.3.2.1进化支毒株.该病毒尚不能在人与人之间有效传播,呈现高致病性病毒特征,对奥斯他韦敏感,但部分毒株对金刚烷胺类药物耐药.结论 H5N6人禽流感分离株并不属于同一毒株,是由H5N1、H5N2、H6N6、H9N2等亚型毒株通过不同组合而重配产生,需加强对这类病毒及其宿主的监控.  相似文献   

16.
In this study, we evaluated the immunogenicity and protective efficacy of a candidate attenuated H5N1 pre-pandemic influenza vaccine of clade 2.3.4, rgAnhui, which was reverse genetically generated from highly virulent A/Anhui/01/2005 (H5N1) wild-type virus. When a low-dose antigen (0.3 μg HA) vaccine was combined with aluminum hydroxide adjuvant, virus neutralization and anti-HA IgG antibodies induced in the sera of vaccinated mice showed similar levels as those in mice vaccinated with non-adjuvanted high-dose antigen (3 μg HA) vaccine. Serum antibodies had broad reactivity against highly pathogenic H5N1 viruses of both homologous and heterologous clades. All mice vaccinated with adjuvanted and non-adjuvanted rgAnhui vaccines at low and high antigen doses survived, without any significant weight loss, lethal challenge infection with homologous clade 2.3.4 viruses, including antigenic variant virus and heterologous clade 2.1.3. Mice vaccinated with low-dose antigen without adjuvant, however, exhibited 20% and 60% survival rates against clade 1 and clade 2.2 viruses, respectively; but, addition of adjuvant improved these rates to 80% and 100%, respectively. The data strongly suggest that aluminum hydroxide-adjuvanted rgAnhui vaccine can elicit broad cross-reactive and protective immunities against homologous and heterologous clades, and that the rgAnhui vaccine is a useful pre-pandemic H5N1 vaccine.  相似文献   

17.
To assess herd immunity to swine influenza viruses, we determined antibodies in 28 paired serum samples from participants in a prospective serologic cohort study in Hong Kong who had seroconverted to pandemic (H1N1) 2009 virus. Results indicated that infection with pandemic (H1N1) 2009 broadens cross-reactive immunity to other recent subtype H1 swine viruses.  相似文献   

18.
Serologic studies for swine influenza viruses (SIVs) in humans with occupational exposure to swine have been reported from the Americas but not from Europe. We compared levels of neutralizing antibodies against 3 influenza viruses--pandemic (H1N1) 2009, an avian-like enzootic subtype H1N1 SIV, and a 2007-08 seasonal subtype H1N1--in 211 persons with swine contact and 224 matched controls in Luxembourg. Persons whose profession involved contact with swine had more neutralizing antibodies against SIV and pandemic (H1N1) 2009 virus than did the controls. Controls also had antibodies against these viruses although exposure to them was unlikely. Antibodies against SIV and pandemic (H1N1) 2009 virus correlated with each other but not with seasonal subtype H1N1 virus. Sequential exposure to variants of seasonal influenza (H1N1) viruses may have increased chances for serologic cross-reactivity with antigenically distinct viruses. Further studies are needed to determine the extent to which serologic responses correlate with infection.  相似文献   

19.
The rapid evolution, genetic diversity, broad host range, and increasing human infection with avian influenza A (H5N1) viruses highlight the need for an efficacious cross-clade vaccine. Using the ferret model, we compared induction of cross-reactive immunity and protective efficacy of three single-clade H5N1 vaccines and a novel multiple-clade H5N1 vaccine, with and without MF59 adjuvant. Reverse genetics (rg) was used to generate vaccine viruses containing the hemagglutinin (HA) and neuraminidase genes of wild-type H5N1 viruses. Ferrets received two doses of inactivated whole-virus vaccine separated by 3 weeks. Single-clade vaccines (7.5 μg HA per dose) included rg-A/Vietnam/1203/04 (clade 1), rg-A/Hong Kong/213/03 (clade 1), and rg-A/Japanese White Eye/Hong Kong/1038/06 (clade 2.3). The multiple-clade vaccine contained 3.75 μg HA per dose of each single-clade vaccine and of rg-A/Whooper Swan/Mongolia/244/05 (clade 2.2). Two doses of vaccine were required to substantially increase anti-HA and virus neutralizing antibody titers to H5N1 viruses. MF59 adjuvant enhanced induction of clade-specific and cross-clade serum antibody responses, reduced frequency of infection (as determined by upper respiratory tract virus shedding and seroconversion data), and eliminated disease signs. The rg-A/Hong Kong/213/03 vaccine induced the highest antibody titers to homologous and heterologous H5N1 viruses, while rg-A/Japanese White Eye/Hong Kong/1038/06 vaccine induced the lowest. The multiple-clade vaccine was broadly immunogenic against clade 1 and 2 viruses. The rg-A/Vietnam/1203/04 vaccine (the currently stockpiled H5N1 vaccine) most effectively reduced upper respiratory tract virus shedding after challenge with clade 1 and 2 viruses. Importantly, all vaccines protected against lethal challenge with A/Vietnam/1203/04 virus and provided cross-clade protection.  相似文献   

20.
After recent emergence of new avian influenza A(H7N9) viruses in humans many people and Governments are asking about H7 influenza vaccine which could provide cross-protection against new viruses, until H7N9 vaccine is prepared from a relevant strain. Here we scientifically justify that available H7N3 live attenuated influenza vaccine (LAIV) can be protective against H7N9 viruses due to the presence of conserved immune epitopes in its hemagglutinin. We used Immune Epitope Database analysis resource to predict B-cell and CTL epitopes distributed across H7N3 HA molecule and assessed their identity with new H7N9 viruses at near 70% and 60% of the epitopes, respectively. In addition, we tested serum samples of volunteers participated in phase I clinical trial of H7N3 LAIV for the presence of anti-H7N9 hemagglutination-inhibition and neutralizing antibodies and found seroconversions in 44.8% of vaccinated persons, which suggests the potential of H7N3 LAIV to protect against new H7N9 avian influenza viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号