首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The standard treatment regimen for patients diagnosed with non-small cell lung cancer (NSCLC) with locally advanced stage III disease is concurrent chemoradiotherapy (CCRT). This study investigated the molecular effects of vinca alkaloid vinorelbine (VNR)-based CCRT. We reviewed the records of 68 patients with stage III NSCLC: 42 patients received VNR-based CCRT, and 26 were treated with radiation alone. Human lung adenocarcinoma cells were used in this study to investigate the molecular effects of glucosylceramide synthase inhibition on VNR-based CCRT. There was response rate of 66.7% with CCRT, which was better than the response rate observed with radiation alone (30.8%; < 0.001). CCRT caused an increase in cell cycle arrest at G2/M phase accompanied by apoptosis. Oxidative c-Jun N-terminal kinase (JNK) activation was involved in the increased apoptosis levels but not the cell cycle arrest. CCRT also induced an increase in ceramide accompanied by a decrease in glucosylceramide that was positively correlated with the cytotoxic effects. Pharmacologically inhibiting glucosylceramide synthase facilitated VNR- and CCRT-induced apoptosis by promoting the JNK pathway. Inhibiting glucosylceramide synthase facilitates the radiosensitizing effects of VNR by promoting JNK-mediated apoptosis in lung adenocarcinoma cells.  相似文献   

2.
Sphingolipids including ceramides and its derivatives such as ceramide-1-phosphate, glucosylceramide (GlcCer), and sphingosine-1-phosphate are essential structural components of cell membranes. They now recognized as novel bioeffector molecules which control various aspects of cell growth, proliferation, apoptosis, and drug resistance. Ceramide, the central molecule of sphingolipid metabolism, generally mediates anti-proliferative responses such as inhibition of cell growth, induction of apoptosis, and/or modulation of senescence. There are two major classes of sphingolipids. One of them is glycosphingolipids which are synthesized from the hydrophobic molecule, ceramide. GlcCer, generated by glucosylceramide synthase (GCS) that transfers the glucose from UDP-glucose to ceramide, is an important glycosphingolipid metabolic intermediate. GCS regulates the balance between apoptotic ceramide and antiapoptotic GlcCer. Downregulation or inhibition of GCS results in increased apoptosis and decreased drug resistance. The mechanism underlying the drug resistance which develops with increased glucosylceramide expression is associated with P-glycoprotein. In various types of cancers, overexpression of GCS has been observed which renders GCS a good target for the treatment of cancer. This review summarizes our current knowledge on the structure and functions of glucosylceramide synthase and glucosylceramide and on the roles of glucosylceramide synthase in cancer therapy and drug resistance.  相似文献   

3.
GCS在人乳腺癌细胞多药耐药中的作用及与P-gP的关系   总被引:1,自引:0,他引:1  
目的探讨葡萄糖神经酰胺合成酶(GCS)在人乳腺癌细胞多药耐药中的作用及其与P-糖蛋白(P-gP)的关系。方法采用MTT法检测多柔比星(阿霉素)对人乳腺癌耐药细胞株MCF-7/Adr和敏感株MCF-7的抑制率和IC50。以GCS抑制剂D,L-threo-1-phenyl-2-decanoyl—amino-3-morpholino-1-propanol(PDMP)预处理MCF-7/Adr后检测抑制率和IC50。运用流式细胞术(FCM)检测人MCF-7及MCF-7/Adr中GCS、P-gp的表达,以PDMP预处理细胞后检测GCS、P-gP的表达。FCM法检测细胞中ADM的荧光强度。结果MCF-7/Adr对MCF-7的耐药倍数为22.7倍,PDMP作用后阿霉素对MCF-7/Adr的抑制率升高,IC50下降(P〈0.05)。MCF-7/Adr中GCS和P-gp的表达均高于MCF-7,PDMP使MCF-7/Adr中GCS表达下降(P〈0.05),对P—gp表达无明显影响(P〉0.05)。FCM检测显示PDMP可使阿霉素在MCF-7内潴留增多。结论GCS在MCF-7/Adr多药耐药中起重要作用,PDMP能影响P-gP功能,GCS与P-gP有-定关系。  相似文献   

4.
We investigated the possibility of the proapoptotic lipid ceramide as an indicator of chemoresistance in leukemia. Doxorubicin (DOX) increased the ceramide level and apoptosis in drug-sensitive HL-60 cells but not in drug-resistant HL-60/ADR cells, under the condition that the uptake of DOX was not different between the two cell lines. In addition, exogenous N-acetylsphingosine (C2-ceramide) enhanced DOX-induced apoptosis in HL-60/ADR cells without affecting the expression of multidrug resistant-1 protein (MDR 1) and the uptake of DOX. A lower level of ceramide with higher activities of glucosylceramide synthase (GCS) and sphingomyelin synthase (SMS) was detected in HL-60/ADR cells than in HL-60 cells. In contrast, HL-60/GCS cells, overexpressing GCS, significantly inhibited DOX-induced ceramide increase and apoptosis. These observations suggest the involvement of ceramide regulation in drug resistance of leukemia cells. In vivo, the level of ceramide was lower in chemoresistant leukemia patients (6.4 +/- 1.8 pmol/nmol phosphate; n = 14) than in chemosensitive patients (9.5 +/- 2.7 pmol/nmol phosphate; n = 9), and the activities of GCS and SMS were more than 2-fold higher in chemoresistant leukemia cells than in chemosensitive cells. MDR-1 protein was faintly expressed in one of four chemoresistant patients, but Bcl-2 were clearly detected in four patients. Therefore, it is suggested that a decrease of the ceramide level via activation of GCS and SMS is associated with the chemoresistant condition in leukemia, probably in relation to Bcl-2 but not to MDR-1 expression.  相似文献   

5.
Xie P  Shen YF  Shi YP  Ge SM  Gu ZH  Wang J  Mu HJ  Zhang B  Qiao WZ  Xie KM 《Leukemia research》2008,32(3):475-480
Ceramide, as a second messenger, initiates one of the major signal transduction pathways in tumor apoptosis. Glucosylceramide synthase (GCS) catalyzes glycosylation of ceramide and produces glucosylceramide. Through GCS, ceramide glycosylation allows cellular escape from ceramide-induced programmed cell death. Here we investigated the expression of GCS in human leukemia cells and an association between GCS and multidrug resistance of leukemia cells. Using RT-PCR technique the level of GCS gene was detected in 65 clinical multidrug resistance/non-resistance cases with leukemia, and in K562 and K562/A02 cell lines. AlamarBlue Assay was applied to confirm the multidrug resistant of K562/A02 cells. PPMP, which is a chemical inhibitor for GCS, was used to determine the relationship between GCS and drug-resistance in K562/A02 cells. In addition, multidrug resistance gene (mdr1), Bcl-2 and Bax mRNA was also analyzed by RT-PCR. The expression of GCS and mdr1 mRNA in clinic multidrug resistance samples exhibited significantly increased compared with clinic drug sensitive group (P<0.05). There was the positive correlation both the expression of GCS and mdr1 genes in leukemia samples (P<0.01, gamma=0.7). AlamarBlue Assay showed that the K562/A02 cell line was 115-fold more resistant to adriamycin and 36-fold more resistant to vincristine compared with drug-sensitive K562 cell line. There also was significant expression difference of GCS and mdr1 genes between K562 and K562/A02 cells. Bcl-2 gene exhibited higher expressions whatever in clinic drug-resistance samples or K562/A02 cells, whereas the expressions of Bax gene were higher in drug-sensitive samples and K562 cells. PPMP increased sensitivity to adriamycin toxicity by inhibiting GCS in K562/A02 cells. Therefore, it is suggested that a high level of GCS in leukemia is possible contributed to multidrug resistance of leukemia cells. Abnormally expressions of the genes in associated with cell apoptosis might be one of the main molecular pathology mechanisms of multidrug resistance caused by GCS gene.  相似文献   

6.
7.

Purpose

The proteasome inhibitor bortezomib (PS-341) has displayed significant efficiency against pancreatic cancer cells. However, the underlying mechanisms are not fully understood. Here, we tested if ceramide production was involved in the bortezomib’s effect.

Methods

Two transformed pancreatic cancer cell lines (PANC-1 and Mia) and the primary pancreatic cancer cells were used. Cell death was analyzed by MTT viability assay and trypan blue staining. Cell apoptosis was analyzed by Histone DNA-ELISA assay and Annexin V FACS. Western blots were used to test signal protein changes. The cellular ceramide level after bortezomib treatment was also determined.

Results

In cultured pancreatic cancer cells, bortezomib increased cellular ceramide production to promote cell apoptosis. The ceramide de novo synthase inhibitor fumonisin B1 (F-B1) suppressed bortezomib-induced ceramide production and apoptosis, while exogenously added C6-ceramide facilitated bortezomib-induced pancreatic cancer cell death. Meanwhile, 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), the inhibitor of glucosylceramide synthetase as well as the sphingosine kinase 1 inhibitors (SKI-II and SKI-IV), facilitated bortezomib-induced ceramide production and subsequent cell apoptosis. Further, bortezomib-induced pro-apoptotic c-Jun N-terminal kinase (JNK) activation was also associated with ceramide production. JNK activation by bortezomib was suppressed by F-B1, but was enhanced by SKI-II and PDMP in pancreatic cancer cells. Finally, C6-ceramide, SKI-II, and PDMP dramatically enhanced bortezomib-induced cytotoxicity in primary cultured pancreatic cancer cells.

Conclusions

We found that bortezomib-induced apoptosis was associated with ceramide production in primary and transformed pancreatic cancer cells.  相似文献   

8.

Purpose

Ceramide is glycosylated to glucosylceramide or lactosylceramide, and this glycosylation is a novel multidrug-resistance (MDR) mechanism. In this work, a short-chain ceramide (C6), lactosylceramide (LacCer), and an inhibitor of ceramide glycosylation (d-threo-1-phenyl-2-decanoylamino-3-1-propanol, PDMP) were evaluated on the proliferation of cervical cancer cells. The participation of glucosylceramide synthase (GCS), P-glycoprotein (P-gp), and multidrug-resistance gene-1 (MDR-1) in the resistance to the antiproliferative effect induced by C6 was also evaluated.

Methods

Cell proliferation was determined by crystal violet staining. GCS and MDR-1 mRNA expression was evaluated by real-time RT-PCR assay. GCS and P-gp protein expressions, as well as Rhodamine 123 uptake, which is a functional test for P-gp efflux activity, were determined by flow cytometry.

Results

C6 inhibited proliferation of CaLo and CasKi cells with an IC50 of 2.5 μM; however, 50 % proliferation of ViBo cells was inhibited with 10 μM. LacCer increased the proliferation of all cells. When cells were treated with PDMP plus C6, no additional effect on antiproliferation induced by C6 was observed in CaLo and CasKi cells; however, proliferation diminished in comparison with C6 alone in ViBo cells. C6 increased GCS and MDR-1 expression in all cells, as well as P-gp expression in CasKi cells.

Conclusions

Cells that have more capacity to glycosylate ceramide and express a higher level of GCS, MDR-1, and P-gp, are more resistant to the antiproliferative effect induced by C6.  相似文献   

9.

Background  

Drug resistance is the outcome of multiple-gene interactions in cancer cells under stress of anticancer agents. MDR1 overexpression is most commonly detected in drug-resistant cancers and accompanied with other gene alterations including enhanced glucosylceramide synthase (GCS). MDR1 encodes for P-glycoprotein that extrudes anticancer drugs. Polymorphisms of MDR1 disrupt the effects of P-glycoprotein antagonists and limit the success of drug resistance reversal in clinical trials. GCS converts ceramide to glucosylceramide, reducing the impact of ceramide-induced apoptosis and increasing glycosphingolipid (GSL) synthesis. Understanding the molecular mechanisms underlying MDR1 overexpression and how it interacts with GCS may find effective approaches to reverse drug resistance.  相似文献   

10.
Glucosylceramide synthase (GCS) is a key enzyme engaged in the biosynthesis of glycosphingolipids and in regulating ceramide metabolism. Studies exploring alterations in GCS activity suggest that the glycolase may have a role in chemosensitizing tumor cells to various cancer drugs. The chemosensitizing effect of inhibitors of GCS (e.g. PDMP and selected analogues) has been observed with a variety of tumor cells leading to the proposal that the sensitizing activity of GCS inhibitors is primarily through increases in intracellular ceramide leading to induction of apoptosis. The current study examined the chemosensitizing activity of the novel GCS inhibitor, Genz-123346 in cell culture. Exposure of cells to Genz-123346 and to other GCS inhibitors at non-toxic concentrations can enhance the killing of tumor cells by cytotoxic anti-cancer agents. This activity was unrelated to lowering intracellular glycosphingolipid levels. Genz-123346 and a few other GCS inhibitors are substrates for multi-drug resistance efflux pumps such as P-gp (ABCB1, gP-170). In cell lines selected to over-express P-gp or which endogenously express P-gp, chemosensitization by Genz-123346 was primarily due to the effects on P-gp function. RNA interference studies using siRNA or shRNA confirmed that lowering GCS expression in tumor cells did not affect their responsiveness to commonly used cytotoxic drugs.  相似文献   

11.
Bovine lactoferricin (LfcinB) is a cationic antimicrobial peptide that selectively induces apoptosis in several different types of human cancer cells. However, the potential use of LfcinB as an anticancer agent is presently limited by the need for relatively high concentrations of the peptide to trigger apoptosis. Ceramide is a membrane sphingolipid that is believed to function as a second messenger during apoptosis. In this study, we investigated the role of ceramide in LfcinB-induced apoptosis in CCRF-CEM and Jurkat T-leukemia cell lines. Exposure to LfcinB caused nuclear condensation and fragmentation, poly(ADP-ribose) polymerase (PARP) cleavage, and DNA fragmentation in CCRF-CEM and Jurkat T-cell acute lymphoblastic leukemia cell lines. Treatment with C6 ceramide, a cell-permeable, short-chain ceramide analog, also induced apoptotic nuclear morphology, PARP cleavage, and DNA fragmentation in T-leukemia cells. Although LfcinB treatment did not cause ceramide to accumulate in CCRF-CEM or Jurkat cells, the addition of C6 ceramide to LfcinB-treated T-leukemia cells resulted in increased DNA fragmentation. Furthermore, modulation of cellular ceramide metabolism either by inhibiting ceramidases with D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol or N-oleoylethanolamine, or by blocking glucosylceramide synthase activity with 1-phenyl-2-palmitoylamino-3-morpholino-1-propanol, enhanced the ability of LfcinB to trigger apoptosis in both Jurkat and CCRF-CEM cells. In addition, LfcinB-induced apoptosis of T-leukemia cells was enhanced in the presence of the antiestrogen tamoxifen, which has multiple effects on cancer cells, including inhibition of glucosylceramide synthase activity. We conclude that manipulation of cellular ceramide levels in combination with LfcinB therapy warrants further investigation as a novel strategy for the treatment of T cell-derived leukemias.  相似文献   

12.
Tumor suppressor p53 plays an essential role in protecting cells from malignant transformation by inducing cell-cycle arrest and apoptosis. Mutant p53 that is detected in more than 50% of cases of cancers loses its role in suppression of tumors but gains in oncogenic function. Strategies to convert mutant p53 into wild-type p53 have been suggested for cancer prevention and treatment, but they face a variety of challenges. Here, we report an alternative approach that involves suppression of glucosylceramide synthase (GCS), an enzyme that glycosylates ceramide and blunts its proapoptotic activity in cancer cells. Human ovarian cancer cells expressing mutant p53 displayed resistance to apoptosis induced by DNA damage. We found that GCS silencing sensitized these mutant p53 cells to doxorubicin but did not affect the sensitivity of cells with wild-type p53. GCS silencing increased the levels of phosphorylated p53 and p53-responsive genes, including p21(Waf1/Cip1), Bax, and Puma, consistent with a redirection of the mutant p53 cells to apoptosis. Reactivated p53-dependent apoptosis was similarly verified in p53-mutant tumors where GCS was silenced. Inhibition of ceramide synthase with fumonisin B1 prevented p53 reactivation induced by GCS silencing, whereas addition of exogenous C6-ceramide reactivated p53 function in p53-mutant cells. Our findings indicate that restoring active ceramide to cells can resuscitate wild-type p53 function in p53-mutant cells, offering preclinical support for a novel type of mechanism-based therapy in the many human cancers harboring p53 mutations.  相似文献   

13.
Overexpression of glucosylceramide synthase (GCS), a pivotal enzyme in glycolipid biosynthesis, contributes to cancer cell resistance to chemotherapy. We previously showed that transfection of doxorubicin-resistant MCF-7-AdrR cells with GCS antisense restored cell sensitivity to doxorubicin and greatly enhanced sensitivity to vinblastine and paclitaxel. In that study, doxorubicin promoted generation of ceramide in MCF-7-AdrR/GCS antisense cells; the present study implicates factors in addition to ceramide that augment sensitivity to chemotherapy. Although GCS antisense cells showed enhanced ceramide formation compared with MCF-7-AdrR when challenged with paclitaxel, GCS antisense cells also showed a 10-fold increase in levels of intracellular drug (paclitaxel and vinblastine). In addition, transfected cells had dramatically decreased expression (80%) of P-glycoprotein and a 4-fold decrease in the level of cellular gangliosides. Chemical inhibition of GCS produced the same effects as antisense transfection: exposure of MCF-7-AdrR cells to the GCS inhibitor 1-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP, 5.0 micromol/L, 4 days) decreased ganglioside levels, restored sensitivity to vinblastine, enhanced vinblastine uptake 3-fold, and diminished expression of MDR1 by 58%, compared with untreated controls. A similar effect was shown in vinblastin-resistant KB-V0.01 cells; after 7 days with PPMP (10 micromol/L), MDR1 expression fell by 84% and P-glycoprotein protein levels decreased by 50%. MCF-7-AdrR cells treated with small interfering RNAs to specifically block GCS also showed a dramatic decrease in MDR1 expression. This work shows that limiting GCS activity down-regulates the expression of MDR1, a phenomenon that may drive the chemosensitization associated with blocking ceramide metabolism. The data suggest that lipids play a role in the expression of multidrug resistance.  相似文献   

14.
The bioactive sphingolipid ceramide induces oxidative stress by disrupting mitochondrial function and stimulating NADPH oxidase (NOX) activity, both implicated in cell death mechanisms. Many anticancer chemotherapeutics (anthracyclines, Vinca alkaloids, paclitaxel, and fenretinide), as well as physiological stimuli such as tumor necrosis factor α (TNFα), stimulate ceramide accumulation and increase oxidative stress in malignant cells. Consequently, ceramide metabolism in malignant cells and, in particular the up-regulation of glucosylceramide synthase (GCS), has gained considerable interest in contributing to chemoresistance. We hypothesized that increases in GCS activity and thus glucosylceramide, the product of GCS activity, represents an important resistance mechanism in glioblastoma. In our study, we determined that increased GCS activity effectively blocked reactive oxygen species formation by NOX. We further showed, in both glioblastoma and neuroblastoma cells that glucosylceramide directly interfered with NOX assembly, hence delineating a direct resistance mechanism. Collectively, our findings indicated that pharmacological or molecular targeting of GCS, using non-toxic nanoliposome delivery systems, successfully augmented NOX activity, and improved the efficacy of known chemotherapeutic agents.  相似文献   

15.
Previously we have described a novel multidrug-resistant cell line, HT29(col), which displayed over expression of the multidrug-resistance protein 1 (MRP1) and an altered sphingolipid composition, including enhanced levels of glucosylceramide (GlcCer; Kok JW, Veldman RJ, Klappe K, Koning H, Filipeanu C, Muller M. Int J Cancer 2000;87:172-8). In our study, long-term screening revealed that, during colchicine-induced acquisition of multidrug resistance in a new HT29(col) cell line, increases in GlcCer occurred concomitantly with upregulation of MRP1 expression. Both MRP1 and GlcCer were found enriched in Lubrol-insoluble membrane domains. The expression of MRP1 and GlcCer were tightly correlated, as indicated also by a reversal of both at the later stage of colchicine consolidation. Resistance to colchicine was determined by MRP1, while glucosylceramide synthase (GCS) did not contribute: 1). Resistance was fully inhibited by MK571. 2). GCS expression and activity were not upregulated in HT29(col) cells. 3). Inhibition of GCS did not affect MRP1-mediated efflux function or sensitivity to colchicine. Instead, overall sphingolipid metabolism was upregulated through an increased rate of ceramide biosynthesis. In conclusion, upregulation of MRP1 occurs in concert with upregulation of GlcCer during multidrug-resistance acquisition, and both are enriched in rafts. The increased GlcCer pool does not directly modulate MRP1 function and cell survival.  相似文献   

16.
The role of glucosylceramide synthase (GCS) in regulating ceramide-induced apoptosis has been widely studied. The purpose of this investigation was to evaluate the role of P-glycoprotein (P-gp) in regulating ceramide cytotoxicity by using C6-ceramide. To accomplish this, we employed HeLa cells with conditional expression of the multidrug resistance gene 1/P-gp. HeLa cells expressing P-gp (P-gp/on cells) challenged with [14C]C6-ceramide (6 μM), synthesized 4.5-fold the amount of C6-glucosylceramide (GC) compared to HeLa cells with suppressed expression of P-gp (P-gp/off cells), whereas the generated levels of C6-sphingomyelin were almost equal (33 and 29% of intracellular 14C, respectively). Tamoxifen, a P-gp antagonist, decreased the C6-GC levels from 3.5-1.0% in the P-gp/off and from 17-2.8% of the total lipid 14C levels in the P-gp/on cells. Tamoxifen did not inhibit cell-free C6-GC synthesis in the P-gp/off or P-gp/on homogenates. However, a specific GCS inhibitor, ethylenedioxy-1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol (ethylenedioxy-P4), blocked synthesis by 90%. In the cytotoxicity assays, the P-gp/off cells were sensitive to C6-ceramide and the P-gp/on cells were resistant. Resistance to C6-ceramide in the P-gp/on cells was reversed by tamoxifen but not by ethylenedioxy-P4. Experiments in another cervical cancer model showed that multidrug-resistant P-gp-rich KB-V1 cells synthesized 3-fold more C6-GC from C6-ceramide than the parental, P-gp-poor KB-3-1 cells, and whereas tamoxifen had no effect on the C6-GC synthesis in the KB-3-1 cells, it inhibited synthesis by 70% in the KB-V1 cells. This study demonstrates that P-gp potentiates C6-ceramide glycosylation and if antagonized augments C6-ceramide sensitivity, both features previously ascribed to GCS. We propose that P-gp can be an effective target for enhancing short-chain ceramide cytotoxicity in the treatment of drug-resistant cancer.  相似文献   

17.
Glucosylceramide synthase (GCS), the key enzyme in the biosynthesis of glycosphingolipids, has been implicated in many biological phenomena, including multidrug resistance. GCS inhibition, by both antisense and the specific inhibitor (D-threo)-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), results in a drastic decrease of apoptosis induced by the p53-independent chemotherapeutic agent N-(4-hydroxyphenyl)retinamide in neuroepithelioma cells. By using the yeast two-hybrid system, we have identified a member of the reticulon (RTN) family (RTN-1C) as the major GCS-protein partner. Interestingly, RTN-1C not only interacts with GCS at Golgi/ER interface but also modulates its catalytic activity in situ. In fact, overexpression of RTN-1C sensitizes CHP-100 cells to fenretinide-induced apoptosis. These findings demonstrate a novel p53-independent pathway of apoptosis regulated by Golgi/endoplasmic reticulum protein interactions, which is relevant for cancer combined therapy.  相似文献   

18.
19.
Drug resistance causes treatment failure in approximately 50% of breast cancer patients with chemotherapy. Overexpression of glucosylceramide synthase (GCS) confers drug resistance in cancer cells, and suppression of GCS sensitizes cancers to chemotherapy in preclinical studies. Thus, GCS becomes a potential target to reverse drug resistance; however, little is known about GCS expression levels in normal tissues and whether GCS overexpression is associated with metastatic cancers. Herewith, we report our studies in GCS expression levels and breast cancer from patients. GCS levels were analyzed using cancer profiling arrays, breast cancer histo-arrays and quantitative RT-PCR in tumor tissues. We found that breast (18 exp. index) and other hormone-dependent organs (testis, cervix, ovary, prostate) displayed the lowest levels of GCS mRNA, whereas liver (52 exp. index) and other organs (kidney, bladder, stomach) displayed the highest levels of GCS. GCS mRNA levels were significantly elevated in tumors of breast, cervix, rectum and small intestine, as compared to each paired normal tissue. In mammary tissue, GCS overexpression was detected in breast cancers with metastasis, but not in benign fibroadenoma or primary tumors. GCS overexpression was coincident with HER2 expression (γ2=0.84) in ER-negative breast adenocarcinoma. In tumor specimens, GCS mRNA was elevated by 4-fold and significantly associated with stage III (5/7), lymph node-positive (7/8) and estrogen receptor-positive breast cancers (7/9). GCS expression was significantly and selectively elevated in breast cancer, in particular in metastatic disease. GCS overexpression was highly associated with ER-positive and HER2-positive breast cancer with metastasis. Although a small study, these data suggest that GCS may be a prognostic indicator and potential target for the treatment of chemotherapy-refractory breast cancer.  相似文献   

20.
殷莉 《国际肿瘤学杂志》2008,35(10):732-735
葡萄糖神经酰胺合成酶(GCS)参与神经酰胺(Cer)糖基化代谢途径,能阻断Cer对细胞凋亡信号的转导.研究表明在多种肿瘤多药耐药细胞株中GCS含量增加且与耐药表型相关,GCS和P-糖蛋白(P-gP)在细胞耐药的生物学机制中有相关性.通过化学抑制剂以及RNA干扰技术下调GCS的水平和活性能增强肿瘤细胞对药物的敏感性.因此,抑制GCS是逆转肿瘤多药耐药的一种新机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号