首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Results from in vitro works suggest that 1,25- and 24,25-dihydroxyvitamin D3 (1,25-(OH)2D3 and 24,25-(OH)2D3) act on bone via different mechanisms. The present investigation was performed to study the effect of these two metabolites and of their precursor 25-hyxdroxyvitamin D3 (25-(OH)D3) on bone cAMP content in vitro. Rats' paired half calvaria were incubated under sterile conditions with one vitamin D3 derivative (10−13 to 10−9 M) or with ethanol (0.005 ml for 15 min to 24 h in 1 ml medium containing 0, 0.2, 1, 2, or 3 mM calcium. In some experiments: (a) cycloheximide (10−5M) was added simultaneously with the vitamin D3 metabolites; (b) 1–84 bPTH (5 × 10−8 M) was added for 5 or 15 min at the end of the 24 h incubation. Calvaria were immersed in 1 ml TCA 5% 4°C and homogenized. The cAMP was extracted with diethylether and measured by a competitive protein binding assay. Results bring further evidence for a particular effect of low doses of 24,25-(OH)2D3 (10−9 to 10−12M) and of 25-(OH)D3 (10−9 to 10−11M) on bone, different from that of 1,25-(OH)2D3: cAMP content was higher in 24,25-(OH)2D3- or 25-(OH)D3-treated and lower in 1,25-(OH)2D3-treated calvaria than in ethanol-treated ones with 1 mM calcium. The 1,25-(OH)2D3 effect persisted in calcium-free medium whereas 25-(OH)D3 and 24,25-(OH)2D3 effects could not be observed with 0 mM nor with 3 mM calcium. The required duration of the preincubation (over 1 h) as well as the inhibitory action of cycloheximide may suggest an involvement of protein synthesis in the vitamin D3 metabolites effects. Neither 1,25-(OH)2D3 nor 24,25-(OH)2D3 affected the PTH-induced increase in bone cAMP content.  相似文献   

2.
Summary The in vitro effects of vitamin D3 metabolites, parathyroid extract (PTE), purified parathyroid hormone (bPTH), vitamin A, and heparin on acid and alkaline phosphatases in rat or mouse calvaria in culture were investigated. Results show that: (a) when compared to values found in half calvaria incubated for 24 h in control medium, the bone acid and alkaline phosphatase content is significantly higher in paired halves incubated with PTE (1 USP/ml), bPTH (4×10−8M), heparin (5 USP/ml), vitamin A (23 USP/ml), 25-(OH)D3 (2.5×10−11 to 2.5×10−8M), 24,25-(OH)2D3, and 1,25(OH)2D3 (2.5×10−12 to 2.5×10−7M); (b) the presence of 24,25-(OH)2D3 at low concentrations in the incubation medium decreases significantly the PTE, bPTH, vitamin A, or heparin induced stimulation of the phosphatase activities. This interaction is also observed when measuringβ glucuronidase and glucose-6-phosphatase activities and45Ca release from previously labeled mouse calvaria; (c) a similar activity could not be found with 1,25-(OH)2D3 suggesting that 24,25-(OH)2D3 may have a specific role in bone metabolism.  相似文献   

3.
Summary The present study was undertaken to test the in vitro action of aluminum on bone phosphatase activities and the possible interaction of this metal with parathyroid hormone (bPTH) or vitamin D3 dihydroxymetabolites [1,25- and 24,25(OH)2D3). Three-day-old rat calvaria were incubated for 24 h with one of the following: bPTH at 5×10−8M, 1,25-or 24,25(OH)2D3 at 2.5×10−9M, Al at concentrations ranging from 3×10−11M to 6×10−6M, or their corresponding solvents. Al effects were also investigated when the medium phosphate or calcium concentrations were modified. In some experiments, Al was added simultaneously with bPTH or one of the vitamin D3 metabolites at the beginning of the 24 h incubation. At the end of all incubations, acid and alkaline phosphatase activities were measured in bone cytoplasmic extract. The results show that: (a) When compared to the value found in half calvaria incubated in a control medium, the bone acid and alkaline phosphatase content is significantly higher in paired halves incubated with Al (3×10−11M to 1.5×10−6M) as well as with bPTH, 1,25-, or 24,25(OH)2D3 and sharply decreased with higher Al concentrations (6×10−6M). (b) The Al effect on phosphatase activities is modified in a free phosphate or a free calcium medium. (c) The presence of Al at 1.5×10−6M or 6×10−6M significantly decreases the bPTH or 1,25(OH)2D3-induced stimulation of bone phosphatase activities. (d) A similar interaction could not be found between Al and 24,25-(OH)2D3.  相似文献   

4.
Summary The effect of vitamin D metabolites on parathyroid hormone secretion was studied using rat parathyroid gland cultured in basal medium Eagle containing 5% serum obtained from thyroparathyroidectomized rat, 1 mM magnesium, and calcium concentration varying from 0.75–2.25 mM, and radioimmunoassay for rat parathyroid hormone (rPTH). 1,25 dihydroxycholecalciferol (1,25(OH)2D3), 5×10−10−2.5×10−8M, consistently decreased rPTH secretion in dose-related manner; the effect reached steady state after 24 hin vitro addition of 1,25(OH)2D3 and was also observed at different medium calcium concentrations (0.75, 1.25, 1.75 mM). Comparison of dose-responses for inhibitory activity of some vitamin D metabolites on rPTH secretion showed: 1,25(OH)2D3=1,24,25(OH)3D3>1α OHD3>25 OHD3. Cholecalciferol (10−5M), 24,25-dihydroxycholecalciferol (10−8−10−6M) and 25,26-dihydroxycholecalciferol (5×10−9−5×10−7M) did not inhibit rPTH secretion. Analysis of structural activity relation of vitamin D metabolites studied indicated that 1α or pseudo-1α hydroxylated metabolites or analogs were active in inhibiting rPTH secretion, while, non-1α hydroxylated metabolites were without or were weakly inhibitory only at very high concentrations. This study provides further evidence for a direct role of 1,25(OH)2D3 on a negative feedback loop for regulation of parathyroid gland function.  相似文献   

5.
Summary Osteoblastic cells were isolated from periosteum-stripped parietal bones of neonatal rat calvaria, seeded at low density (5,000 cells/35 mm of Falcon dish), and cultured for 6 days in BGJ medium supplemented with 20% of vitamin D-depleted FCS or vitamin D and calcium-depleted FCS, with daily addition of 1,25 dihydroxyvitamin D3 (10−9 M) or 24,25-dihydroxyvitamin D3 (10−9 M). Plating efficiency, clonal growth (number and size distribution of the colonies formed), and the alkaline phosphatase phenotype were evaluated on days 2 and 6 of culture. (1) Culture for 6 days in media not supplemented with 1,25(OH)2D3 led to a significant (P<0.001) loss of the alkaline phosphatase phenotype of the osteoblastic cells; the loss was greater in proliferating cells than in nonproliferating ones and occurred in both 0.12 mM or 1.1 mM ionized calcium concentrations. (2) Daily addition of 1,25(OH)2D3 (10−9 M) but not 24,25(OH)2D3 maintained the basal percentage of Alk Pase positive cell units in nonproliferating cells and significantly reduced the loss of this phenotype in proliferating colonies. (3) This effect did not stem from an action of the hormone on cell growth. 1,25(OH)2D3 was also found to enhance the adhesiveness of the seeded osteoblasts, irrespective of the medium calcium concentration.  相似文献   

6.
Summary The hormonal metabolite of vitamin D3, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], exerts its biological effects by binding to a cytosolic receptor protein. Such a protein has been demonstrated in vitamin D3 target organs including fetal rat calvariae and more recently in rat osteogenic sarcoma cells. In this study we have compared the binding of 25-hydroxyvitamin D3 [25(OH)D3] and 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] to that of 1,25-(OH)2D3 in fetal rat calvariae and osteogenic sarcoma (OS) cells. Sucrose density sedimentation, DNA-cellulose chromatography, and intracellular uptake studies have been employed to evaluate these interactions. In cytosol preparations from calvariae, [3H]-1,25(OH)2D3 bound to a 3.3S macromolecule and to a much greater extent to a 5.8S macromolecule while both [3H]25(OH)D3 and [3H]24,25(OH)2D3 bound to the 5.8S macromolecule. By incubating intact calvariae and OS cells with labeled metabolites and thus establishing binding intracellularly prior to cell disruption, we have found that the 3.3S protein which has high specificity for 1,25(OH)2D3 occurs inside the cells; the 5.8S protein, however, does not occur inside the cells but is generated after cell disruption. The [3H]-1,25(OH)2D3-receptor complex adsorbed to DNA-cellulose and was eluted from this affinity resin at 0.28M KCl. In contrast, [3H]25(OH)D3 and [3H]-24,25(OH)2D3 binding activity did not adsorb to DNA-cellulose. We conclude that, in contrast to the 3.3S protein, the 5.8S macromolecule does not fulfill receptor criteria but is rather generated by the experimental manipulation of the bone cells. Our data suggest that the vitamin D3 actions on bone are mediated only via the 3.3S receptor, and hence quantitative but not qualitative differences of the effects of the various metabolites are feasible. With technical assistance by M. Larsen, D. Meler, and M. LaFrance.  相似文献   

7.
Summary Vitamin D3 metabolites have been shown to affect proliferation, differentiation, and maturation of cartilage cells. Previous studies have shown that growth zone chondrocytes respond primarily to 1,25(OH)2D3 whereas resting zone chondrocytes respond primarily to 24,25(OH)2D3. To examine the role of calcium in the mechanism of hormone action, this study examined the effects of the Ca ionophore A23187, 1,25(OH)2D3, and 24,25(OH)2D3 on Ca influx and efflux in growth zone chondrocytes and resting zone chondrocytes derived from the costochondral junction of 125 g rats. Influex was measured as incorporation of45Ca. Efflux was measured as release of45Ca from prelabeled cultures into fresh media. The pattern of45Ca influx in unstimulated (control) cells over the incubation period was different in the two chondrocyte populations, whereas the pattern of efflux was comparable. A23187 induced a rapid influx of45Ca in both types of chondrocytes which peaked by 3 minutes and was over by 6 minutes. Influx was greatest in the growth zone chondrocytes. Addition of 10−8–10−9 M 1,25(OH)2D3 to growth zone chondrocyte cultures results in a dose-dependent increase in45Ca influx after 15 minutes. Efflux was stimulated by these concentrations of hormone throughout the incubation period. Addition of 10−6–10−7 M 24,25(OH)2D3 to resting zone chondrocytes resulted in an inhibition in ion efflux between 1 and 6 minutes, with no effect on influx during this period. Efflux returned to control values between 6 and 15 minutes.45Ca influx was inhibited by these concentrations of hormone from 15 to 30 minutes. These studies demonstrate that changes in Ca influx and efflux are metabolite specific and may be a mechanism by which vitamin D metabolites directly regulated chondrocytes in culture.  相似文献   

8.
Summary A new organ culture system for the study of bone metabolism has been developed using chicken medullary bone. The presence of viable bone cells in culture was demonstrated by histological and histochemical techniques. Incorporation of3H-proline into collagenase-digestible protein (CDP) and noncollagen protein (NCP) was determined using purified bacterial collagenase. Collagen accounted for approximately 10–15% of the total protein labeled. The addition of 1,25-dihydroxycholecalciferol (1,25 (OH)2D3) resulted in a dose-dependent inhibition of3H-proline incorporation into CDP at doses from 10−10M to 10−7M, with maximal suppression reaching 30% of control. The effect was specific for collagen, since3H-proline incorporation into NCP was unaffected. Hydroxyproline analysis of bone explants and culture medium revealed a 1,25(OH)2D3-induced decrease in the3H-hydroxyproline content of the system (bone + medium), suggesting that the effect of 1,25(OH)2D3 is due to inhibition of collagen synthesis rather than enhanced collagen degradation, impaiored incorporation of collagen into bone matrix, or bone resorption Medullary bone collagen synthesis was not affected by 24,25(OH)2D3, either alone or in combination with 1,25(OH)2D3. Structure-activity studies of vitamin D metabolites showed that 1,25(OH)2D3 and 1,24,25(OH)3D3 were the most potent metabolites tested, followed by 1-alpha(OH)D3. 25(OH)D3 and 24,25(OH)2D3 had no effect at concentrations as high as 10−7M. These results indicate a possible role for vitamin D in the regulation of medullary bone formation during the reproductive cycle of the egg-laying hen, and suggest the potential utility of medullary bone as anin vitro model for the study of bone formation  相似文献   

9.
Summary Calcitriol (1,25(OH)2D3) has been shown, under certain conditions, to elicit anin vitro response in adult avian calvarium which may be interpreted as calcium uptake by the bone. The present investigation was undertaken to study the specificity of this response. Calvaria were removed from 6-week-old female Japanese quail and cultured for periods of up to 96 hours at 37°C in 5% CO2/95% air. 1,25(OH)2D3 induced a fall in the medium total and ionic calcium concentrations at both 48 hours and 96 hours of incubation; these responses were not blocked by the presence of 10−4 M acetazolamide. Bovine parathyroid hormone (bPTH (1–34)) at 10−7 M, and dibutyryl cyclic AMP (DBcAMP) at 10−4M, had no effect on the medium calcium. In contrast, forskolin at 10−4 M induced a marked fall in medium calcium concentrations, particularly at 48 hours. The specificity was also studied with respect to vitamin D3 and its two major metabolites. 1,25(OH)2D3 exhibited a bellshaped dose-response relationship with the maximal effect at 10−7 M. In contrast, the other two compounds elicited no effects at 10−7 M or 10−6 M; significant responses were observed at 10−5 M with both agents. In general, 25-dihydroxyvitamin D3 (25OHD3) was more potent than vitamin D3. These findings suggest that the medium calcium response to 1,25(OH)2D3, interpreted as calcium uptake by the cultured adult avian bone, is relatively specific among calcemic agents; the response was elicited by forskolin but not by bPTH(1–34) or DBcAMP. The potency ratio exhibited by the vitamin D3 analogs (1,25(OH)2D3>25OHD3>vitamin D3) reinforces the specificity claim.  相似文献   

10.
Summary 3H-thymidine-labeled blood monocytes were cultured with osteoclasts in the presence or absence of parathyroid hormone or 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) in order to evaluate (1) the percentage of monocytes capable of fusing with osteoclasts, (2) if parathyroid hormone or 1,25(OH)2D3 influences the contribution of blood monocytes to osteoclast nuclear turnover. We found that within 24 hours of culture, about 8% of blood monocytes fuse with osteoclasts regardless of the presence of parathyroid hormone (PTH) or 1,25(OH)2D3. On the other hand, formation of nonosteoclastic giant cells by fusion of monocytes is enhanced by 5×10−9 M 1,25(OH)2D3 but only in the presence of the bone resorptive cells.  相似文献   

11.
Summary This study was undertaken to determine whether 1α-hydroxyvitamin D3 [1α(OH)D3] administration to chicks in vivo results in 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] intestinal receptor occupancy and to compare the temporal characteristics of the physiological effects of 1α(OH)D3 and 1,25(OH)2D3 for several days after a single dose of either steroid. Occupied 1,25(OH)2D3 receptors of the chick duodenal mucosa were measured by the recently developed exchange assay procedure [J Biol Chem (1980) 255:9534–9537]. Within 2 h after 1α(OH)D3 injection in rachitic chicks, there was a significant elevation of 1,25(OH)2D3 receptor occupancy in the intestinal mucosa. This observation represents the first direct confirmation that this synthetic analog exerts biological effects through occupancy of 1,25(OH)2D3 receptors. Serum 1,25(OH)2D3 levels reached a 3-fold higher peak after 1,25(OH)2D3 injection (3.25 nmol) than after 1α(OH)D3 injection (6.5 nmol); further, after 1α(OH)D3 injection the peak was delayed by 2–4 h. However, serum 1,25(OH)2D3 levels remained elevated for only 3–6 h after 1,25(OH)2D3, compared to 48 h after 1α(OH)D3 injection. Occupied 1,25(OH)2D3 receptor levels paralleled serum 1,25(OH)2D3 levels at all times after administration of either steroid. At 24 h, duodenal vitamin D-dependent calcium binding protein (CaBP) levels were similarly elevated in both treatment groups, but by 48 and 72 h after 1α(OH)D3 administration CaBP and serum Ca2+, respectively, were more significantly elevated. These data confirm that 1α(OH)D3 induces its major biological effects via intracellular 1,25(OH)2D3 receptors and reinforce the concept that 25-hydroxylation is a prerequisite for these effects. These results also suggest that 1α(OH)D3 may become useful in the therapy for sustained treatment of vitamin D deficiency diseases.  相似文献   

12.
We have previously established an uremic rat model which is suitable for investigating the effect of various treatment modalities on the progression of renal osteodystrophy [1]. Four months subsequent to 5/6 nephrectomy, animals were treated three times a week for 3 months with either vehicle, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], 1,25(OH)2D3+24,25-dihydroxyvitamin D3 [24,25(OH)2D3], 1,25(OH)2D3+calcitonin (CT), or 1,25(OH)2D3+ 24,25(OH)2D3+CT. At termination of the study, clinical chemistry, chemical composition, and mechanical properties of femurs, calvarial parathyroid hormone (PTH)-elicited adenylate cyclase (AC), and phospholipase C (PL-C) activities, femoral cross-sectional area, and bone histomorphometry were analyzed. The main findings were that 1,25(OH)2D3±24,25(OH)2D3 treatment enhanced elasticity as well as time to fracture at the femoral metaphysis. CT potentiated the increase in elasticity obtained by 1,25(OH)2D3±24,25(OH)2D3 treatment. Only 24,25(OH)2D3 administration rectified the supernormal PTH-stimulated uremic bone AC, and only 1,25(OH)2D3 medication normalized the diminished CT-elicited AC. The obliterated uremic bone PTH-sensitive PL-C was fully normalized by all drug regimens. Femoral shaft inner zone diameter was enhanced by uremia, however, all drug treatments normalized it. Ditto effect was registered with either drug treatment on the subnormal outer and inner zone widths. Histomorphometrical analyses showed that 1,25(OH)2D3 administration reduced both eroded and osteoid surfaces. Most prominently, adjuvant 24,25(OH)2D3 or CT administration potentiated the beneficial effect of 1,25(OH)2D3 on fibrosis and osteomalacia. We assert that vitamin D3 treatment markedly reverses the development of renal osteodystrophy, and CT potentiates the effect of vitamin D3.  相似文献   

13.
Matrix vesicles are extracellular organelles produced by cells that mineralize their matrix. They contain enzymes that are associated with calcification and are regulated by vitamin D metabolites in a cell maturation-dependent manner. Matrix vesicles also contain metalloproteinases that degrade proteoglycans, macromolecules known to inhibit calcificationin vitro, as well as plasminogen activator, a proteinase postulated to play a role in activation of latent TGF-\. In the present study, we examined whether matrix vesicle metalloproteinase and plasminogen activator are regulated by 1,25(OH)2D3 and 24,25 (OH)2D3. Matrix vesicles and plasma membranes were isolated from fourth passage cultures of resting zone chondrocytes that had been incubated with 1010-10-7 M24,25(OH)2D3 or growth zone chondrocytes incubated with 10-11-l0-8 M 1,25(OH)2D3, and their alkaline phosphatase, active and total neutral metalloproteinase, and plasminogen activator activities determined. 24,25(OH)2D3 increased alkaline phosphatase by 35–60%, decreased active and total metalloproteinase by 75%, and increased plasminogen activator by fivefold in matrix vesicles from resting zone chondrocyte cultures. No effect of vitamin D treatment was observed in plasma membranes isolated from these cultures. In contrast, 1,25(OH)2D3 increased alkaline phosphatase by 35–60%, but increased active and total metalloproteinase three- to fivefold and decreased plasminogen activator by as much as 75% in matrix vesicles isolated from growth zone chondrocyte cultures. Vitamin D treatment had no effect on plasma membrane alkaline phosphatase or metalloproteinase, but decreased plasminogen activator activity. The results demonstrate that neutral metalloproteinase and plasminogen activator activity in matrix vesicles are regulated by vitamin D metabolites in a cell maturation-specific manner. In addition, they support the hypothesis that 1,25(OH)2D3 regulation of matrix vesicle function facilitates calcification by increasing alkaline phosphatase and phospholipase A2 specific activities as well as metalloprotemases which degrade proteoglycans.  相似文献   

14.
We have reported that physiological dose (30pM-650pM) of 1,25-dihydroxyvitamin D3[1,25(OH)2D3] increased the unidirectional movement of45Ca2+ from the lumen to the venous effluent within a few minutes in perfused duodena from normal chicks, and hypercalcemia inhibited this rapid stimulatory effect on calcium transport mediated by 1,25(OH)2 D3. The purpose of the present study was to determine the effect of somatostatin on calcium transport in chicks. The basal Ca2+ transport, in the absence of 1,25(OH)2 D3, did not change when 10−8M to 10−6M of somatostatin was added to the perfusate. The effect of 1,25(OH)2D3 on calcium transport, however, was completely abolished on addtion of 10−6M somatostatin in the perfusate, and partially blocked on addition of 10−7M somatostatin and 10−8M somatostatin had no effect on 1,25(OH)2 D3 mediated calcium transport. These results suggest that somatostatin may decrease intestinal calcium transport mediated by the rapid direct action of 1,25(OH)2 D3.  相似文献   

15.
Summary Vitamin D and its metabolites are tightly bound to the serum vitamin D-binding protein (DBP) and only the free hormone is considered to be physiologically active. On the other hand, DBP could interact with cell membranes and even favor its intracellular entry. The present study was undertaken to examine the effects of DBP on bone resorption stimulated by 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. Forelimb bones from 19-day-old fetal rats were cultured for 5 days in the presence of purified human or rat serum albumin (hSAP or rSAP) and 1,25(OH)2D3, with or without human or rat DBP (hDBP or rDBP). Bone resorption was assessed by measuring the release of previously incorporated45Ca. We found that the resorptive response to 1,25(OH)2D3 was minimally altered by hDBP (5 μM). The minimal effects of hDBP on 1,25(OH)2D3 activity on rat bones might be explained by a 6-fold lower affinity of hDBP (1.1×107 M−1) than rDBP (5.9×107 M−1) for 1,25(OH)2D3 or by species differences in cellular recognition of DBP. In a homologous rat system, however, rDBP at low (0.5 μM) or physiological (5 μM) concentration significantly decreased 1,25(OH)2D3-induced bone resorption. These data therefore support the hypothesis that free rather than DBP-bound 1,25(OH)2D3 is physiologically important.  相似文献   

16.
Summary The present investigation was undertaken to study the role of carbonic anhydrase in 1,25 dihydroxyvitamin D3-induced bone resorption. Calvaria were removed from 5- to 6-day-old mice and cultured for periods up to 96 h in Dulbecco's Modified Eagle Medium (high glucose, 4,500 mg/dl) supplemented with antibiotics and either heat-inactivated horse and fetal calf sera or bovine serum albumin. The experimental cultures contained 1×10−8 M 1,25 dihydroxyvitamin D3 (1,25(OH)2D3). All cultures were incubated at 37°C in 5% CO(in2)/95% air. Bone resorption was assessed by release of stable calcium into the medium. Bone enzymes (acid and alkaline phosphatases and carbonic anhydrase) were determined following homogenization in 0.25 M sucrose. The effects of 1,25(OH)2D3 were studied in the presence and absence of the carbonic anhydrase inhibitor acetazolamide and its analogue (CL 13,850), which lacks inhibitory activity. Acetazolamide inhibited 1,25(OH)2D3-induced calcium release in a dose-dependent fashion from 10−5–10−4 M. When added to the cultures at a concentration of 1×10−4 M, acetazolamide completely blocked the 1,25(OH)2D3-induced calcium release, a phenomenon not seen with an equimolar concentration of CL 13,850. The most significant finding was that 1,25(OH)2D3-induced calcium release was accompanied by a significant increase in the carbonic anhydrase activity of bone at both 48 (treated/control ratio=2.05) and 96 (treated/control ratio=2.59) hours. Bone alkaline phosphatase activity decreased and acid phosphatase activity increased in response to 1,25(OH)2D3. These findings support the concept that carbonic anhydrase is involved in bone resorption inducedin vitro by certain calcemic hormones and related compounds.  相似文献   

17.
Summary The direct effect of 1,25(OH)2D3 upon osteoclast formation from precursor cells is still unknown. In the present experiments we have tested the effects of 1,25(OH)2D3 on the generation of osteoclastlike cells in cat bone marrow cultures. These cultures contain proliferating nonattached mononuclear cells and precursor cells that subsequently attach to the culture flask surface and then fuse to form multinucleated osteoclastlike cells. After 7 days of culture we separated the nonattached precursor cells from the attached cells and studied the effects of 1,25(OH)2D3 (10−10 M–10−8 M) on multinucleated cell formation in these two cell populations. In cultures derived from the non-attached precursor cells, 7 days of treatment with 1,25(OH)2D3 (10−8 M) resulted in a 180% increase in the number of attached mononuclear cells and a 90% increase in the number of nuclei contained within multinucleated cells. These effects were dose-dependent. 1,25(OH)2D3 did not have a consistent effect on the number of nonattached precursor cells. In cultures derived from attached cells, 7 days of treatment with 1,25(OH)2D3 (10−8 M) induced a 50% increase in the number of mononuclear attached cells and a 40% increase in the number of nuclei within polykaryons. The most likely explanation for these results is that 1,25(OH)2D3 promotes the differentiation and subsequent adhesion of nonattached precursor cells, stimulates proliferation of attached mononuclear precursor cells, and possibly stimulates fusion of these attached precursor cells.  相似文献   

18.
Summary Binding of [3H] 1,25 (OH)2D3 and effects of 1,25 (OH)2D3 on cell ultrastructure were evaluated in vascular smooth muscle cells (VSMC) primary cultures (aortic media). Specific reversible binding of [3H] 1,25 (OH)2D3 by a 3.5 S macromolecule with DNA binding, KD 6.2×10−10M and Nmax 16 fmol/mg protein was demonstrated. Incubation of VSMC with 10−8 M 1,25 (OH)2D3, but not 25 (OH)D3, in the presence of 10% FCS for up to three weeks caused rapid reversible appearance in the cytoplasm of membrane-bounded electron-dense lysosomal particles which on electronspectroscopic imaging contained Ca and Pi. VSMC are targets for vitamin D.  相似文献   

19.
20.
Summary Previous reports demonstrated that the administration of large doses of 24R,25-dihydroxyvitamin D3 [24R,25(OH)2D3] to animals with normal vitamin D supply causes an increase in bone volume with reduced bone resorption and decreased osteoclast number. The present study was undertaken to clarify if 24R,25(OH)2D3 has any inhibitory effect on the formation and function of osteoclasts. The effect of 24R,25(OH)2D3 on the formation of osteoclastic cells was examined by measuring the number of tartrate-resistant acid phosphatase-positive multinucleated cells (MNCs) formed from hemopoietic progenitor cells obtained from spleens of 5-fluorouracil-treated mice. Treatment with 1,25(OH)2D3 or parathyroid hormone fragment 1–34 [PTH(1–34)] stimulated osteoclast-like MNC formation in a dose-dependent manner. Addition of 24R,25(OH)2D3 alone showed a weak stimulatory effect on MNC formation at 10-6 M, which appeared to be due to its binding to 1,25(OH)2D3 receptors. In contrast, when 24R,25(OH)2D3 was added together with 1,25(OH)2D3 or PTH(1–34), it inhibited osteoclast-like MNC formation stimulated by these hormones. A significant inhibition of MNC formation was observed with 10-7M 24R,25(OH)2D3, and the stimulatory effect of 1,25(OH)2D3 or PTH(1–34) was almost completely eliminated with 10-6 M 24R,25(OH)2D3. Neither 24S,25(OH)2D3 nor 25(OH)D3 exhibited a similar inhibitory effect. The effect of 24R,25(OH)2D3 on the resorptive function of osteoclasts was examined by measuring the formation of resorption pits by mouse bone cells on dentine slices. Treatment with 24R,25(OH)2D3 also inhibited the resorption pit formation stimulated by 1,25(OH)2D3 or PTH(1–34) with similar dose response. These results demonstrate that 24R,25(OH)2D3 has a specific inhibitory effect on the formation and function of osteoclastic cells stimulated by 1,25(OH)2D3 or PTH, and suggest that these effects of 24R,25(OH)2D3 may play role in the regulation of bone metabolism by modulating the actions of osteotropic hormones on osteoclastic bone resorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号