首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
OBJECTIVE: Animal and in vitro studies indicate that a decrease in beta-cell insulin secretion, and thus a decrease in tonic alpha-cell inhibition by intraislet insulin, may be an important factor for the increase in glucagon secretion during hypoglycemia. However, in humans this role of decreased intraislet insulin is still unclear. RESEARCH DESIGN AND METHODS: We studied glucagon responses to hypoglycemia in 14 nondiabetic subjects on two separate occasions. On both occasions, insulin was infused from 0 to 120 min to induce hypoglycemia. On one occasion, somatostatin was infused from -60 to 60 min to suppress insulin secretion, so that the decrement in intraislet insulin during the final 60 min of hypoglycemia would be reduced. On the other occasion, subjects received an infusion of normal saline instead of the somatostatin. RESULTS: During the 2nd h of the insulin infusion, when somatostatin or saline was no longer being infused, plasma glucose ( approximately 2.6 mmol/l) and insulin levels ( approximately 570 pmol/l) were comparable in both sets of experiments (both P > 0.4). In the saline experiments, insulin secretion remained unchanged from baseline (-90 to -60 min) before insulin infusion and decreased from 1.20 +/- 0.12 to 0.16 +/- 0.04 pmol . kg(-1) . min(-1) during insulin infusion (P < 0.001). However, in the somatostatin experiments, insulin secretion decreased from 1.18 +/- 0.12 pmol . kg(-1) . min(-1) at baseline to 0.25 +/- 0.09 pmol . kg(-1) . min(-1) before insulin infusion so that it did not decrease further during insulin infusion (-0.12 +/- 0.10 pmol . kg(-1) . min(-1), P = 0.26) indicating the complete lack of a decrement in intraislet insulin during hypoglycemia. This was associated with approximately 30% lower plasma glucagon concentrations (109 +/- 7 vs. 136 +/- 9 pg/ml, P < 0.006) and increments in plasma glucagon above baseline (41 +/- 8 vs. 67 +/- 11 pg/ml, P < 0.008) during the last 15 min of the hypoglycemic clamp. In contrast, increases in plasma growth hormone were approximately 70% greater during hypoglycemia after somatostatin infusion (P < 0.007), suggesting that to some extent the increases in plasma glucagon might have reflected a rebound in glucagon secretion. CONCLUSIONS: These results provide direct support for the intraislet insulin hypothesis in humans. However, the exact extent to which a decrement in intraislet insulin accounts for the glucagon responses to hypoglycemia remains to be established.  相似文献   

2.
We studied the efficacy of low-dose (0.1 U/kg/h) and high-dose (1..0 U/kg/h) insulin, given randomly to children with diabetic ketoacidosis (DKA) by continuous intravenous infusion without a loading dose. Plasma glucose reached 250 mg/dl in 3.4 +/- 0.4 h with the high-dose insulin group compared with 5.4 +/- 0.5 h with the low-dose insulin group (P < 0.01). During the first 12 h of therapy, plasma glucose fell below 100 mg/dl in 2 of 16 in the low-dose compared with 12 of 16 in the high-dose patients. The decrement of ketone bodies, cortisol, and glucagon was similar in both groups. The number of hours required for HCO3(-) greater than or equal to meq/l and arterial blood pH greater than or equal to 7.30 were not significantly different in the two groups. Hypokalemia (K < 3.4 meq/L) occurred in 3 of 16 low-dose and 10 of 16 high-dose patients. The data show that low-dose insulin, with a slower rate of glucose decrease, is as effective as a high dose for the treatment of DKA in children with less incidence of hypokalemia and decreased potential for hypoglycemia.  相似文献   

3.
Synthetic oxyntomodulin, a predicted product of the glucagon gene, which is produced in the human lower intestinal mucosa, was infused in doses of 100 and 400 ng kg-1 h-1 into six volunteers to study its pharmacokinetics and effects on pentagastrin-stimulated gastric acid secretion (100 ng kg-1 h-1). The concentration of oxyntomodulin in plasma measured with a cross-reacting glucagon assay increased from 37 +/- 5 to 106 +/- 17 and 301 +/- 40 pmol l-1, respectively. The metabolic clearance rate was 5.2 +/- 0.7 ml kg-1 min-1 and the half-life in plasma was 12 +/- 1 min. Oxyntomodulin reduced the pentagastrin-stimulated acid secretion by 20 +/- 9% during the low-rate infusion (P less than 0.05) and by 76 +/- 10% during the high-rate infusion (P less than 0.05). In accordance with the homology with glucagon, there was a small, significant rise in plasma concentrations of insulin and insulin C-peptide during oxyntomodulin infusion. Oxyntomodulin may therefore be included among the potential incretins and enterogastrones in man.  相似文献   

4.
OBJECTIVE: To examine whether pork and human insulin induce different counterregulatory responses to hypoglycemia. RESEARCH DESIGN AND METHODS: The responses to a mild hypoglycemic stimulus were determined in 35 healthy young adults with the glucose-clamp technique to ensure standardization of glucose and insulin levels. Either pork (n = 15) or human (n = 20) regular insulin was infused (0.8 mU.kg-1.min-1) to lower plasma glucose from 4.7 +/- 0.07 to 3.3 +/- 0.04 mM (both groups) over approximately 40 min. Plasma glucose was maintained at that level (with variable rate glucose infusion) for an additional 60 min. RESULTS: Steady-state insulin levels were similar in both groups (316 +/- 50 vs. 280 +/- 29 pM, pork vs. human). Before insulin administration, basal counterregulatory hormone levels were indistinguishable. Most importantly, after plasma glucose was lowered, hormonal responses were nearly identical. No significant differences in peak values of epinephrine (1769 +/- 404 vs. 1775 +/- 311 pM, pork vs. human), norepinephrine (1.64 +/- 0.23 vs. 1.87 +/- 0.20 nM, pork vs. human), glucagon (163 +/- 29 vs. 175 +/- 20 ng/L, pork vs. human), growth hormone (14 +/- 3 vs. 17 +/- 3 micrograms/L, pork vs. human), or cortisol (543 +/- 83 vs. 458 +/- 28 nM, pork vs. human) occurred. CONCLUSIONS: Our data suggest that pork and human insulin produce a comparable and robust hormonal response in healthy adults under conditions of controlled hypoglycemia.  相似文献   

5.
Cardiovascular responses to high-dose (0.100 IE kg-1 h-1) and low-dose insulin infusion (0.005-0.01 IE kg-1 h-1) were examined in eight hyperglycaemic, resting type I diabetics. Mean blood glucose dropped from 15.9 to 7.1 mmol l-1 and from 14.4 to 12.6 mmol l-1, respectively, during 1 h. Blood pressure and heart rate did not change. There were no significant changes in absolute or relative left ventricular volumes, the 95% confidence interval (CI) for the difference between the doses in left ventricular ejection fraction was -6 to 8%. Calf blood volume increased on high-dose insulin (p = 0.05, CI for the difference over low-dose insulin 0.0 to 4.6 ml 100 ml-1 tissue). Blood flow increased with 1.6 ml 100 ml-1 tissue min-1 with high-dose insulin and with 0.6 ml 100 ml-1 tissue min-1 with low-dose (CI for the difference -0.5 to 3.4). Noradrenaline increases were small and there was no difference between the doses (p = 0.47).  相似文献   

6.
To examine the effects of physiological insulin concentrations on the renin-angiotensin and sympathetic nervous systems, healthy volunteers were studied by the euglycaemic glucose clamp technique with sequential 60 min 0.5 and 1.0 mU kg-1 min-1 insulin infusions and, subsequently, by a control infusion simulating clamp conditions. Plasma renin activity increased from 0.8 +/- 0.1 ng ml-1 h-1 basally to 1.0 +/- 0.2 ng ml-1 h-1 during the 0.5 mU infusion to 1.4 +/- 0.1 ng ml-1 h-1 during the 1 mU infusion but did not change during control infusion (0.9 +/- 0.3 ng ml-1h-1 to 0.9 +/- 0.2 ng ml-1h-1 to 1.0 +/- 0.1 ng ml-1h-1) (P less than 0.001 insulin vs. control by ANOVAR). Plasma angiotensin II increased during insulin (21.2 +/- 1.8 to 25.2 +/- 2.3 to 29.3 +/- 2.4 pg ml-1) but not during control infusion (24.0 +/- 2.8 to 23.6 +/- 2.6 to 23.5 +/- 2.5 pg ml-1) (P less than 0.001 insulin vs. control). Serum aldosterone did not change significantly during either infusion (insulin: 239 +/- 89 pmol l-1 to 237 +/- 50 pmol l-1 to 231 +/- 97 pmol l-1, control: 222 +/- 79 to 237 +/- 50 to 213 +/- 97 pmol l-1). Plasma noradrenaline increased to a greater extent during insulin (1.03 +/- 0.2 to 1.14 +/- 0.8 to 1.27 +/- 0.17 nmol l-1) than control infusion (0.86 +/- 0.09 to 0.97 +/- 0.09 to 0.99 +/- 0.09 nmol 1-1 (P less than 0.01 insulin vs. control). Changes in mean systolic blood pressure during insulin infusion were significantly different from control (+ 3 vs. -4 mmHg, P less than 0.001). In conclusion acute hyperinsulinaemia within the physiological range increases circulating hormones of the renin-angiotensin and sympathetic nervous systems and also increases systolic blood pressure.  相似文献   

7.
Effects of alterations in metabolic clearance rates, hepatic extraction, and plasma concentrations of insulin on hepatic and peripheral contribution to hypoglycemia and glucose counterregulation were studied in conscious dogs. Since insulin and sulfated insulin had markedly different metabolic clearance rates (34 +/- 1 vs. 16 +/- 1 ml/kg per min, respectively) and fractional hepatic extraction (42 +/- 1% vs. 15 +/- 2%, respectively), biologically equivalent amounts infused intraportally produced twofold higher hepatic vein and artery sulphated insulin concentrations and concentrations that were 30% higher in the portal vein. This significantly larger arterial/portal concentration ratio (0.67 vs. 0.45, respectively) permitted assessment of differential distribution of insulin on glucose turnover using [3-3H]glucose. Insulin and sulfated insulin (1 and 2 mU/kg per min) caused similar hypoglycemia. While insulin transiently suppressed glucose production and increased glucose disappearance, sulfated insulin had significantly greater effects on glucose disappearance and clearance, without suppression of glucose production. Despite similar hypoglycemia, sulfated insulin caused greater increment in glucagon. 3 mU/kg per min insulin caused more rapid and greater hypoglycemia, greater glucose clearance, and greater glucagon increments without suppression of glucose production, which indicates that with larger doses of insulin counterregulation can absolutely mask the suppressive effect of insulin. The effects of insulin and sulfated insulin were evaluated using euglycemic clamp to eliminate interference from stimulated counterregulation. Sequential infusion of 1 and 2 mU/kg per min of both insulins suppressed endogenous glucose production to 0 at 150 min, which indicates that the apparent lack of a hepatic effect of sulfated insulin during hypoglycemia was masked by greater counterregulation. This greater counterregulation may reflect greater peripheral glucose clearance, and prevented greater hypoglycemia than after the same insulin doses. The results indicate that the different rates of removal and the total metabolic clearance rate caused different concentrations and relative distribution between the portal and arterial blood compartments, leading to the significantly different contributions by the liver and peripheral tissues to the same hypoglycemia.  相似文献   

8.
During an oral glucose tolerance test (oGTT) and an isoglycaemic intravenous glucose infusion, blood glucose and the responses of insulin and glucose-dependent insulinotropic polypeptide (GIP) were measured in six healthy volunteers. On a subsequent occasion a constant infusion of human synthetic GIP (2 pmol kg-1 min-1 for 30 min and 0.5 pmol kg-1 min-1 for another 30 min was given to each subject, again with a simultaneous infusion of glucose to maintain isoglycaemia to the oGTT. During the oGTT, plasma GIP concentrations rose from 92 +/- 18 pmol 1(-1) to 257 +/- 42 pmol 1(-1) 60 min after ingestion of glucose (mean +/- SEM). When glucose was administered intravenously plasma GIP levels did not rise significantly over basal. The infusion of hGIP mimicked the physiological plasma GIP response after oral glucose during the first 60 min of the study. Plasma insulin concentrations were significantly lower between 45 and 60 min than during the oGTT (438 +/- 67 vs. 200 +/- 48 pmol 1(-1); P less than 0.02; 465 +/- 96 vs. 207 +/- 48 pmol 1(-1); P less than 0.01). However, the total and incremental integrated insulin responses during the first 60 min of the study were, though lower, not significantly different from the oGTT experiment when glucose and hGIP were infused simultaneously. Thus, in the presence of mild physiological hyperglycaemia, human GIP is able to enhance the initial insulin response almost equivalently to the stimulus provided by oral glucose. Decreased insulin concentrations during porcine GIP infusions in previous experiments might be due to sequence differences between human and porcine GIP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Insulin resistance in Graves'' disease: a quantitative in-vivo evaluation   总被引:4,自引:0,他引:4  
Hyperthyroidism is considered to be an insulin-resistant state, but a quantitative evaluation of some action of insulin is still lacking. We performed euglycaemic clamp at about 350 and 7000 pmol l-1 plasma insulin concentration in combination with the 3H-glucose infusion in 12 patients with Graves' disease and in 12 matched controls. Fasting plasma insulin (126 +/- 6.5 vs. 77.5 +/- 5.7 pmol l-1; P less than 0.001), C-peptide (502 +/- 36 vs. 363 +/- 41 pmol l-1; P less than 0.001) and glucagon (47 +/- 3.3 vs. 33.3 +/- 3 pmol l-1; P less than 0.01) were significantly higher in hyperthyroids than in euthyroids. Basal hepatic glucose production was significantly higher in hyperthyroids than in euthyroids (18.3 +/- 1.4 vs. 9.2 +/- 0.5 mumol l-1; P less than 0.0001), and its suppression during physiological hyperinsulinaemia was only 50% in hyperthyroids. Glucose utilization and suppression of lipolysis were normally stimulated by insulin. All parameters altered during hyperthyroidism were normalized during methimazole-induced euthyroidism. We conclude that insulin resistance involves mainly glucose rather than lipid and is selective at the hepatic level.  相似文献   

10.
To characterize glucose counterregulatory mechanisms in patients with noninsulin-dependent diabetes mellitus (NIDDM) and to test the hypothesis that the increase in glucagon secretion during hypoglycemia occurs primarily via a paracrine islet A-B cell interaction, we examined the effects of a subcutaneously injected therapeutic dose of insulin (0.15 U/kg) on plasma glucose kinetics, rates of glucose production and utilization, and their relationships to changes in the circulating concentrations of neuroendocrine glucoregulatory factors (glucagon, epinephrine, norepinephrine, growth hormone, and cortisol), as well as to changes in endogenous insulin secretion in 13 nonobese NIDDM patients with no clinical evidence of autonomic neuropathy. Compared with 11 age-weight matched nondiabetic volunteers in whom euglycemia was restored primarily by a compensatory increase in glucose production, in the diabetics there was no compensatory increase in glucose production (basal 2.08 +/- 0.04----1.79 +/- 0.07 mg/kg per min at 21/2 h in diabetics vs. basal 2.06 +/- 0.04----2.32 +/- 0.11 mg/kg per min at 21/2 h in nondiabetics, P less than 0.01) despite the fact that plasma insulin concentrations were similar in both groups (peak values 22 +/- 2 vs. 23 +/- 2 microU/ml in diabetics and nondiabetics, respectively). This abnormality in glucose production was nearly completely compensated for by a paradoxical decrease in glucose utilization after injection of insulin (basal 2.11 +/- 0.03----1.86 +/- 0.06 mg/kg per min at 21/2 h in diabetics vs. basal 2.08 +/- 0.04----2.39 +/- 0.11 mg/kg per min at 21/2 h nondiabetics, P less than 0.01), which could not be accounted for by differences in plasma glucose concentrations; the net result was a modest prolongation of hypoglycemia. Plasma glucagon (area under the curve [AUC] above base line, 12 +/- 3 vs. 23 +/- 3 mg/ml X 12 h in nondiabetics, P less than 0.05), cortisol (AUC 2.2 +/- 0.5 vs. 4.0 +/- 0.7 mg/dl X 12 h in nondiabetics, P less than 0.05), and growth hormone (AUC 1.6 +/- 0.4 vs. 2.9 +/- 0.4 micrograms/ml X 12 h in nondiabetics, P less than 0.05) responses in the diabetics were decreased 50% while their plasma norepinephrine responses (AUC 49 +/- 12 vs. 21 +/- 5 ng/ml X 12 h in nondiabetics, P less than 0.05) were increased twofold (P less than 0.05) and their plasma epinephrine responses were similar to those of the nondiabetics (AUC 106 +/- 17 vs. 112 +/- 10 ng/ml X 12 h in nondiabetics). In both groups of subjects, increases in plasma glucagon were inversely correlated with plasma glucose concentrations (r = -0.80 in both groups, P less than 0.01) and suppression of endogenous insulin secretion (r = -0.57 in nondiabe  相似文献   

11.
Three studies were performed on nine normal volunteers to assess whether catecholamine-mediated lipolysis contributes to counterregulation to hypoglycemia. In these three studies, insulin was intravenously infused for 8 h (0.30 mU.kg-1.min-1 from 0 to 180 min, and 0.40 mU.kg-1.min-1 until 480 min). In study I (control study), only insulin was infused; in study II (direct + indirect effects of catecholamines), propranolol and phentolamine were superimposed to insulin and exogenous glucose was infused to reproduce the same plasma glucose (PG) concentration of study I. Study III (indirect effect of catecholamines) was the same as study II, except heparin (0.2 U.kg-1.min-1 after 80 min), 10% Intralipid (1 ml.min-1 after 160 min) and variable glucose to match PG of study II, were also infused. Glucose production (HGO), glucose utilization (Rd) [3-3H]glucose, and glucose oxidation and lipid oxidation (LO) (indirect calorimetry) were determined. In all three studies, PG decreased from approximately 4.8 to approximately 2.9 mmol/liter (P = NS between studies), and plasma glycerol and FFA decreased to a nadir at 120 min. Afterwards, in study I plasma glycerol and FFA increased by approximately 75% at 480 min, but in study II they remained approximately 40% lower than in study I, whereas in study III they rebounded as in study I (P = NS). In study II, LO was lower than in study I (1.69 +/- 0.13 vs. 3.53 +/- 0.19 mumol.kg-1.min-1, P less than 0.05); HGO was also lower between 60 and 480 min (7.48 +/- 0.57 vs. 11.6 +/- 0.35 mumol.kg-1.min-1, P less than 0.05), whereas Rd was greater between 210 and 480 min (19 +/- 0.38 vs. 11.4 +/- 0.34 mumol.kg-1.min-1, respectively, P less than 0.05). In study III, LO increased to the values of study I; between 4 and 8 h, HGO increased by approximately 2.5 mumol.kg-1.min-1, and Rd decreased by approximately 7 mumol.kg-1.min-1 vs. study II. We conclude that, in a late phase of hypoglycemia, the indirect effects of catecholamines (lipolysis mediated) account for at least approximately 50% of the adrenergic contribution to increased HGO, and approximately 85% of suppressed Rd.  相似文献   

12.
We hypothesized that adrenergic mechanisms support the postabsorptive plasma glucose concentration, and prevent hypoglycemia when glucagon secretion is deficient. Accordingly, we assessed the impact of glucagon deficiency, produced by infusion of somatostatin with insulin, without and with pharmacologic alpha- and beta-adrenergic blockade on the postabsorptive plasma glucose concentration and glucose kinetics in normal human subjects. During somatostatin with insulin alone mean glucose production fell from 1.5 +/- 0.05 to 0.7 +/- 0.2 mg/kg per min and mean plasma glucose declined from 93 +/- 3 to 67 +/- 4 mg/dl over 1 h; glucose production then increased to base-line rates and plasma glucose plateaued at 64-67 mg/dl over 2 h. This plateau was associated with, and is best attributed to, an eightfold increase in mean plasma epinephrine. It did not occur when adrenergic blockade was added; glucose production remained low and mean plasma glucose declined progressively to a hypoglycemic level of 45 +/- 4 mg/dl, significantly (P less than 0.001) lower than the final value during somatostatin with insulin alone. These data provide further support for the concept that maintenance of the postabsorptive plasma glucose concentration is a function of insulin and glucagon, not of insulin alone, and that adrenergic mechanisms do not normally play a critical role. They indicate, however, that an endogenous adrenergic agonist, likely adrenomedullary epinephrine, compensates for deficient glucagon secretion and prevents hypoglycemia in the postabsorptive state in humans. Thus, postabsorptive hypoglycemia occurs when both glucagon and epinephrine are deficient, but not when either glucagon or epinephrine alone is deficient, and insulin is present.  相似文献   

13.
OBJECTIVE: The effects of glucose, arginine, and glucagon on beta-cell function as well as alpha-cell response to arginine were studied in a family with mitochondrial diabetes. RESEARCH DESIGN AND METHODS: The function of alpha- and beta-cells was assessed in all five siblings carrying the mitochondrial tRNA Leu(UUR) gene mutation at position 3243 and compared with six sex-, age-, and weight-matched control subjects. Insulin and C-peptide responses were evaluated by intravenous glucagon application, intravenous arginine stimulation test, and intravenous glucose tolerance test. Glucagon secretion was assessed during the arginine stimulation test. RESULTS: The glucose disappearance constant (K(g)) value (mean +/- SEM 0.61 +/- 0.04 vs. 1.1 +/- 0.04, P = 0.0002) as well as the acute insulin response to glucose (area under the curve [AUC] 0-10 min, 77.7 +/- 50.7 vs. 1,352.3 +/- 191.5 pmol/l, P = 0.0004) were decreased in all patients. Similarly, glucagon-stimulated C-peptide response was also impaired (728 +/- 111.4 vs. 1,526.7 +/- 157.7 pmol/l, P = 0.005), whereas the insulin response to arginine (AUC) was normal (1,346.9 +/- 710.8 vs. 1,083.2 +/- 132.5 pmol/l, P = 0.699). Acute glucagon response to arginine (AUC) was normal but tended to be higher in the patients than in the control subjects (181.7 +/- 47.5 vs. 90.0 +/- 21.1 pmol/l, P = 0.099). CONCLUSIONS: This study shows impaired insulin and C-peptide secretion in response to a glucose challenge and to glucagon stimulation in diabetic patients with mitochondrial tRNA Leu(UUR) gene mutation, although insulin and glucagon secretory responses to arginine were normal.  相似文献   

14.
We have minimized methodological errors in the isotope dilution technique by using stable isotope, [6,6-2H2]glucose, thus avoiding the problem of contamination of tritiated glucose tracers and, by maintaining a constant plasma tracer enrichment have reduced error due to mixing transients. Using these modifications we have calculated hepatic glucose production in 20 patients with non-insulin-dependent diabetes mellitus during low (1 mU kg-1 min-1) and high (8 mU kg-1 min-1) dose insulin infusions. Mean fasting hepatic glucose production was 14.2 +/- 0.8 mumol kg-1 min-1. This suppressed by only 68% to 4.6 +/- 0.8 mumol kg-1 min-1 during the low-dose insulin infusion (plasma insulin 0.85 +/- 0.05 nmol l-1) and did not suppress further during the high-dose insulin infusion (plasma insulin 14.55 +/- 0.83 nmol l-1). Hepatic glucose production was significantly higher than zero throughout the study. Thus, we have found that minimization of known errors in the isotope dilution technique results in physiologically plausible and significantly positive values for hepatic glucose production indicating that the liver is resistant to insulin in patients with non-insulin-dependent diabetes mellitus.  相似文献   

15.
The amount-of-substance rate of glucose metabolism and its sensitivity to the concentration of insulin was quantified in 10 non-diabetic patients with alcoholic cirrhosis of varying severity, using the 'glucose clamp technique'. Fasting glucose and insulin were 5.4 +/- 0.3 mmol/l and 187 +/- 50 pmol/l (mean +/- SEM), respectively. During the hyperglycaemic clamp (blood glucose at 12.5 mmol/l) the glucose metabolic rate (divided by body mass) was 27 +/- 4 mumol X min-1 X kg-1 at an insulin concentration of 998 +/- 158 pmol/l. Thus the insulin sensitivity of the tissue glucose metabolism was 22 +/- 7 m3 X min-1 X kg-1. During the euglycaemic clamp exogenous insulin was given to a concentration of 574 +/- 72 pmol/l. The resulting glucose metabolic rate was 20 +/- 4 mumol X min-1 X kg-1 and the insulin sensitivity the same as during hyperglycaemia. The calculated systemic delivery rate of insulin (divided by body surface area) was 783 +/- 172 pmol X min-1 X m-2. Fasting glucagon was 32 +/- 5 pmol/ and only partly depressed by glucose or insulin. In comparison with stated relevant control groups cirrhotics exhibit glucose intolerance characterized by decreased sensitivity to insulin, hyperinsulinaemia due to increased release, and hyperglucagonaemia with decreased suppressibility. There was no relation between clinical or biochemical data of the patients and the above results, suggesting that the abnormal glucose metabolism does not depend directly on the decreased liver function but on a disturbed pancreatic-hepatic-peripheral axis.  相似文献   

16.
OBJECTIVE: The MiniMed Continuous Glucose Monitoring System (CGMS) measures subcutaneous interstitial glucose levels that are calibrated against three or more fingerstick glucose levels daily. The objective of the present study was to examine whether the relationship between plasma and interstitial fluid glucose is altered by changes in plasma glucose and insulin levels and how such alterations might influence CGMS performance. RESEARCH DESIGN AND METHODS: Arterialized plasma glucose, sensor glucose, and interstitial fluid glucose were measured by microdialysis in 11 healthy subjects during a 1.0 mU. kg(-1). min(-1) stepped euglycemic-hypoglycemic-hyperglycemic (plasma glucose approximately 5, 3.1, and 8.6 mmol/l, respectively) insulin clamp that raised plasma insulin to approximately 360-390 pmol/l. RESULTS: When the CGMS was calibrated versus plasma glucose levels before insulin infusion, basal sensor and plasma glucose were similar (5.0 +/- 0.3 vs. 5.2 +/- 0.3 mmol/l, respectively); dialysate glucose was 3.3 +/- 0.9 mmol/l. During the hyperinsulinemic-euglycemia study (plasma glucose 4.9 +/- 0.3 mmol/l), dialysate glucose fell by 30-35%, accompanied by a significant reduction in sensor glucose (to 3.7 +/- 0.6 mmol/l; P < 0.001 vs. plasma). Subsequently, sensor levels remained lower than plasma values during mild hypoglycemia (2.5 +/- 0.6 vs. 3.1 +/- 0.3 mmol/l; P < 0.01) and during recovery from hypoglycemia (7.3 +/- 1.2 vs. 8.6 +/- 0.6; P < 0.01). However, when the CGMS was calibrated against plasma glucose levels before and during each step of the clamp, sensor glucose levels increased throughout the study and did not differ from plasma glucose values during hypoglycemia. CONCLUSIONS: Although hyperinsulinemia may contribute to modest discrepancies between plasma and sensor glucose levels, the CGMS is able to accurately track acute changes in plasma glucose when calibrated across a range of plasma glucose and insulin levels.  相似文献   

17.
Evaluation of beta-cell secretory capacity using glucagon-like peptide 1   总被引:5,自引:0,他引:5  
OBJECTIVE: Beta-cell secretory capacity is often evaluated with a glucagon test or a meal test. However, glucagon-like peptide 1 (GLP-1) is the most insulinotropic hormone known, and the effect is preserved in type 2 diabetic patients. RESEARCH DESIGN AND METHODS: We first compared the effects of intravenous bolus injections of 2.5, 5, 15, and 25 nmol GLP-1 with glucagon (1 mg intravenous) and a standard meal (566 kcal) in 6 type 2 diabetic patients and 6 matched control subjects. Next, we studied another 6 patients and 6 control subjects and, in addition to the above procedure, performed a combined glucose plus GLP-1 stimulation, where plasma glucose was increased to 15 mmol/l before injection of 2.5 nmol GLP-1. Finally, we compared the insulin response to glucose plus GLP-1 stimulation with that observed during a hyperglycemic arginine clamp (30 mmol/l) in 8 patients and 8 control subjects. RESULTS: Peak insulin and C-peptide concentrations were similar after the meal, after 2.5 nmol GLP-1, and after glucagon. Side effects were less with GLP-1 than with glucagon. Peak insulin and C-peptide concentrations were as follows (C-peptide concentrations are given in parentheses): for patients (n = 12): meal, 277 +/- 42 pmol/l (2,181 +/- 261 pmol/l); GLP-1 (2.5 nmol), 390 +/- 74 pmol/l (2,144 +/- 254 pmol/l); glucagon, 329 +/- 50 pmol/l (1,780 +/- 160 pmol/l); glucose plus GLP-1, 465 +/- 87 pmol/l (2,384 +/- 299 pmol/l); for control subjects (n = 12): meal, 543 +/- 89 pmol/l (2,873 +/- 210 pmol/l); GLP-1, 356 +/- 51 pmol/l (2,001 +/- 130 pmol/l); glucagon, 420 +/- 61 pmol/l (1,995 +/- 99 pmol/l); glucose plus GLP-1, 1,412 +/- 187 pmol/l (4,391 +/- 416 pmol/l). Peak insulin and C-peptide concentrations during the hyperglycemic arginine clamp and during glucose plus GLP-1 injection were as follows: for patients: 475 +/- 141 pmol/l (2,295 +/- 379 pmol/l) and 816 +/- 268 pmol/l (3,043 +/- 508 pmol/l), respectively; for control subjects: 1,403 +/- 308 pmol/l (4,053 +/- 533 pmol/l) and 2,384 +/- 452 pmol/l (6,047 +/- 652 pmol/l), respectively. CONCLUSIONS: GLP-1 (2.5 nmol = 9 microg) elicits similar secretory responses to 1 mg glucagon (but has fewer side effects) and a standard meal. Additional elevation of plasma glucose to 15 mmol/l did not enhance the response further. The incremental response was similar to that elicited by arginine, but hyperglycemia had an additional effect on the response to arginine.  相似文献   

18.
Pancreatic polypeptide was infused intravenously in healthy fasting subjects at 1 pmol kg-1 (n = 7) and 4 pmol kg-1 min-1 (n = 10) producing plasma PP concentrations of 223 +/- 37 pmol/l (mean +/- SEM) and 891 +/- 64 pmol/l respectively. These levels are similar to and four-fold higher than those seen after a normal mixed breakfast in healthy young adults. In a separate study five healthy subjects ingested a small breakfast during infusion of PP on different days at 1 pmol kg-1 min-1 and 2 pmol kg-1 min-1 respectively. PP at 1 pmol kg-1 min-1 caused a marked reduction in fasting plasma motilin concentrations to 20% of the basal level (p less than 0.001). There were, however, no significant changes in plasma concentrations of insulin, glucagon, gastrin, secretin, enteroglucagon, gastric inhibitory peptide or neurotensin. Despite previous reports possibly implicating PP in metabolism, there were no significant effects on blood levels of glucose, alanine lactate, 3-hydroxybutyrate, glycerol or non-esterified fatty acids, either in the fasting state or after the ingestion of food. Although it seems unlikely that PP is a major hormonal regulator of intermediary metabolism in man, its ability to suppress motilin at physiological concentrations suggests the possibility of an indirect influence on digestive motor function.  相似文献   

19.
1. To determine whether chronic angiotensin-converting enzyme inhibition induces a decrease in proximal tubular angiotensin-converting enzyme activity, urine and blood samples were collected in conscious New Zealand rabbits before and after 16 days administration in drinking water of low doses of captopril (2.6 +/- 0.6 mg 24 h-1 kg-1), high doses of captopril (7.6 +/- 0.9 mg 24 h-1 kg-1) or no captopril (controls). The kidneys were then removed and angiotensin-converting enzyme activity was determined in isolated pars recta of microdissected nephrons as pmol of tritiated hippurylglycylglycine substrate hydrolysed min-1 of incubation and mm-1 of tubule. 2. Both low and high doses of captopril significantly decreased plasma angiotensin-converting enzyme activity and increased plasma renin activity, thus indicating an effective inhibition of circulating angiotensin-converting enzyme. Both low and high doses of captopril also significantly decreased mean arterial pressure and increased water intake and urine flow rate. Neither dose modified creatinine clearance and absolute and fractional sodium excretion. 3. None of the doses altered urinary kallikrein excretion. Urinary excretion of kinins was increased by 98.7% compared with control rabbits by the high dose of captopril (402 +/- 152 vs 251 +/- 104 ng/24 h, P less than 0.01) but was unchanged by the low dose of captopril. 4. Angiotensin-converting enzyme activity in the pars recta was lower in rabbits given the high dose of captopril than in control rabbits (17.6 +/- 7.2 vs 37.3 +/- 9.0 pmol min-1 mm-1, P less than 0.01) but was not decreased in rabbits given the low dose of captopril (40.4 +/- 5.0 pmol min-1 mm-1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Recombinant human insulin-like growth factor-1 (rhIGF-1) lowers blood glucose in humans but its effect on counterregulatory responses has not been established. We therefore compared infusions of rhIGF-1 (0.7 micrograms/kg per min) and insulin (0.8 mU/kg.min) for 120 min in 10 healthy volunteers (glucose allowed to fall freely). With both, glucose fell rapidly because of stimulation of glucose uptake and suppression of hepatic glucose production. Despite similar plasma glucose nadirs (2.6 +/- 0.1 vs. 2.7 +/- 0.1 mM), the glucagon response was absent (P < 0.005), growth hormone release was attenuated (P < 0.03), and norepinephrine levels were increased (P < 0.05) by rhIGF-1 compared with insulin. Absent glucagon responses were associated with a blunting of the rebound increase in glucose production (P < 0.05 vs. insulin). After stopping the infusions, glucose recovery was delayed with rhIGF-1 (P < 0.001 vs. insulin). To further evaluate the effects of rhIGF-1 during a standard hypoglycemic stimulus, eight additional healthy subjects received rhIGF-1 or insulin while glucose was clamped at 2.8 mM. Again the rise in glucagon during insulin-induced hypoglycemia was totally abolished by rhIGF-1. Growth hormone responses were delayed, whereas increases in norepinephrine, heart rate, and symptomatic awareness of hypoglycemia were greater with rhIGF-1 compared with insulin (P < 0.05). It was concluded that rhIGF-1 suppression of glucagon release during hypoglycemia impairs glucose recovery. Paradoxically, awareness of hypoglycemia is enhanced with rhIGF-1 in part due to stimulation of the sympathetic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号