首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gastrointestinal hormone, glucagon-like peptide-1(7-36)amide (GLP-1) is released after a meal. The potency of synthetic GLP-1 in stimulating insulin secretion and in inhibiting glucagon secretion indicates the putative physiological function of GLP-1. In vitro, the nonmammalian peptide, exendin(9-39)amide [ex(9-39)NH2], is a specific and competitive antagonist of GLP-1. This in vivo study examined the efficacy of ex(9-39)NH2 as an antagonist of exogenous GLP-1 and the physiological role of endogenous GLP-1. Six healthy volunteers underwent 10 experiments in random order. In each experiment, a 30-min period of euglycemia was followed by an intravenous infusion of glucose for 150 min that established a stable hyperglycemia of 8 mmol/liter. There was a concomitant intravenous infusion of one of the following: (1) saline, (2) GLP-1 (for 60 min at 0.3 pmol . kg-1 . min-1 that established physiological postprandial plasma levels, and for another 60 min at 0.9 pmol . kg-1 . min-1 to induce supraphysiological plasma levels), (3-5) ex(9-39)NH2 at 30, 60, or 300 pmol . kg-1 . min-1 + GLP-1, (6-8) ex(9-39)NH2 at 30, 60, or 300 pmol . kg-1 . min-1 + saline, (9 and 10) GIP (glucose-dependent insulinotropic peptide; for 60 min at 0.8 pmol . kg-1 . min-1, with saline or ex(9-39)NH2 at 300 pmol . kg-1 . min-1). Each volunteer received each of these concomitant infusions on separate days. ex(9-39)NH2 dose-dependently reduced the insulinotropic action of GLP-1 with the inhibitory effect declining with increasing doses of GLP-1. ex(9-39)NH2 at 300 pmol . kg-1 . min-1 blocked the insulinotropic effect of physiological doses of GLP-1 and completely antagonized the glucagonostatic effect at both doses of GLP-1. Given alone, this load of ex(9-39)NH2 increased plasma glucagon levels during euglycemia and hyperglycemia. It had no effect on plasma levels of insulin during euglycemia but decreased plasma insulin during hyperglycemia. ex(9-39)NH2 did not alter GIP-stimulated insulin secretion. These data indicate that in humans, ex(9-39)NH2 is a potent GLP-1 antagonist without any agonistic properties. The pancreatic A cell is under a tonic inhibitory control of GLP-1. At hyperglycemia, the B cell is under a tonic stimulatory control of GLP-1.  相似文献   

2.
Pancreatic polypeptide was infused intravenously in healthy fasting subjects at 1 pmol kg-1 (n = 7) and 4 pmol kg-1 min-1 (n = 10) producing plasma PP concentrations of 223 +/- 37 pmol/l (mean +/- SEM) and 891 +/- 64 pmol/l respectively. These levels are similar to and four-fold higher than those seen after a normal mixed breakfast in healthy young adults. In a separate study five healthy subjects ingested a small breakfast during infusion of PP on different days at 1 pmol kg-1 min-1 and 2 pmol kg-1 min-1 respectively. PP at 1 pmol kg-1 min-1 caused a marked reduction in fasting plasma motilin concentrations to 20% of the basal level (p less than 0.001). There were, however, no significant changes in plasma concentrations of insulin, glucagon, gastrin, secretin, enteroglucagon, gastric inhibitory peptide or neurotensin. Despite previous reports possibly implicating PP in metabolism, there were no significant effects on blood levels of glucose, alanine lactate, 3-hydroxybutyrate, glycerol or non-esterified fatty acids, either in the fasting state or after the ingestion of food. Although it seems unlikely that PP is a major hormonal regulator of intermediary metabolism in man, its ability to suppress motilin at physiological concentrations suggests the possibility of an indirect influence on digestive motor function.  相似文献   

3.
Insulin regulation of renal glucose metabolism in conscious dogs.   总被引:1,自引:7,他引:1       下载免费PDF全文
Previous studies indicating that postabsorptive renal glucose production is negligible used the net balance technique, which cannot partition simultaneous renal glucose production and glucose uptake. 10 d after surgical placement of sampling catheters in the left renal vein and femoral artery and a nonobstructive infusion catheter in the left renal artery of dogs, systemic and renal glucose and glycerol kinetics were measured with peripheral infusions of [3-3H]glucose and [2-14C]glycerol. After baseline measurements, animals received a 2-h intrarenal infusion of either insulin (n = 6) or saline (n = 6). Left renal vein insulin concentration increased from 41 +/- 8 to 92 +/- 23 pmol/l (P < 0.05) in the insulin group, but there was no change in either arterial insulin, (approximately 50 pmol/l), glucose concentrations (approximately 5.4 mmol/l), or glucose appearance (approximately 18 mumol.kg-1.min-1). Left renal glucose uptake increased from 3.1 +/- 0.4 to 5.4 +/- 1.4 mumol.kg-1.min-1 (P < 0.01) while left renal glucose production decreased from 2.6 +/- 0.9 to 0.7 +/- 0.5 mumol.kg-1.min-1 (P < 0.01) during insulin infusion. Renal gluconeogenesis from glycerol decreased from 0.23 +/- 0.06 to 0.17 +/- 0.04 mumol.kg-1.min-1 (P < 0.05) during insulin infusion. These results indicate that renal glucose production and utilization account for approximately 30% of glucose turnover in postabsorptive dogs. Physiological hyperinsulinemia suppresses renal glucose production and stimulates renal glucose uptake by approximately 75%. We conclude that the kidney makes a major contribution to systemic glucose metabolism in the postabsorptive state.  相似文献   

4.
Synthetic oxyntomodulin, a predicted product of the glucagon gene, which is produced in the human lower intestinal mucosa, was infused in doses of 100 and 400 ng kg-1 h-1 into six volunteers to study its pharmacokinetics and effects on pentagastrin-stimulated gastric acid secretion (100 ng kg-1 h-1). The concentration of oxyntomodulin in plasma measured with a cross-reacting glucagon assay increased from 37 +/- 5 to 106 +/- 17 and 301 +/- 40 pmol l-1, respectively. The metabolic clearance rate was 5.2 +/- 0.7 ml kg-1 min-1 and the half-life in plasma was 12 +/- 1 min. Oxyntomodulin reduced the pentagastrin-stimulated acid secretion by 20 +/- 9% during the low-rate infusion (P less than 0.05) and by 76 +/- 10% during the high-rate infusion (P less than 0.05). In accordance with the homology with glucagon, there was a small, significant rise in plasma concentrations of insulin and insulin C-peptide during oxyntomodulin infusion. Oxyntomodulin may therefore be included among the potential incretins and enterogastrones in man.  相似文献   

5.
Pressor effect of arginine vasopressin in progressive autonomic failure   总被引:4,自引:0,他引:4  
The blood pressure (BP) and heart rate (HR) responses to 5 min incremental intravenous infusions of noradrenaline (NA) and arginine vasopressin (AVP) were investigated both in patients with progressive autonomic failure (PAF) and in normal volunteers. Stepwise infusion of NA at rates of 300-3000 pmol min-1 kg-1 produced a bradycardia and a dose related increase in BP in normal subjects. In subjects with PAF there was no significant HR response but the dose-BP response was shifted to the left with significant pressor responses at infusion rates of 60-300 pmol min-1 kg-1. Stepwise infusion of AVP at 0.2-5.0 pmol min-1 kg-1 caused transient bradycardia but no pressor response in seven normal volunteers. Further increases in AVP infusion in three other subjects achieved plasma AVP levels as high as 3000-4000 pmol/l, and still no significant pressor response was observed. Stepwise infusion of AVP at 0.05-2.0 pmol min-1 kg-1 in the eight subjects with PAF resulted in a pressor response without any change in HR. During this infusion plasma AVP increased from 0.8 +/- 0.2 (mean +/- SEM) to 30 +/- 2 pmol/l. A significant pressor response was already apparent at a plasma AVP level of 5.5 +/- 1.8 pmol/l.  相似文献   

6.
Ketone bodies and non-esterified fatty acids (NEFA) inhibit insulin stimulated glucose uptake in muscle in-vitro. In man the infusion of ketone bodies lowers plasma NEFA levels thus confounding the interpretation of individual effects. The aim of this study was to examine the effect of ketone bodies on insulin mediated forearm glucose metabolism independent of the changes in the plasma NEFA levels. Seven healthy men received sodium 3-hydroxybutyrate (15 mumol kg-1 min-1) or sodium bicarbonate (control) for 240 min. Heparin (0.2 U kg-1 min-1) and insulin (0.01 U kg-1 h-1) were infused for 90 min (pre-clamp), followed by insulin alone (0.025 U kg-1 h-1) and euglycaemia was maintained (clamp). Plasma NEFA levels and rates of forearm NEFA uptake (+23 +/- 14 and +49 +/- 21 [mean +/- SEM] nmol 100 ml forearm [FA]-1 min-1) were comparable during the pre-clamp periods, and were suppressed equally during hyperinsulinaemia. Sodium 3-hydroxybutyrate infusion raised the blood ketone body levels from 70 +/- 4 mumol/l to a plateau of 450 +/- 30 mumol/l, while control levels declined from baseline (ketone body vs control; P less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
In adults, glucose infusion results in a decreased glucose production rate (GPR) as a mechanism for maintaining euglycemia. To document the development of glucose homeostasis, we derived the GPR in 23 preterm appropriate for gestational age infants, 14 term appropriate for gestational age infants, and in 6 adults. After a 3-h fast, the average plasma glucose and insulin concentration was measured and the GPR was derived. During glucose infusion (5.6 +/- 0.3 mg X kg-1 min-1), compared with saline controls, the preterms had a rise in plasma glucose and plasma insulin, and the GPR was 1.4 mg X kg-1 min-1 (range, 0-4.4) vs. 3.0 mg X kg-1 min-1 (range, 1.8-4.1) (saline controls). In the term infants, only the plasma insulin concentration was elevated when the glucose infused (5.7 +/- 0.3 mg X kg-1 min-1) infants were compared with the saline controls and GPR was 0.4 X kg-1 min-1 (range, 0-2.6) vs. 3.4 mg X kg-1 min-1 (range, 2.8-5.7) (saline controls). In comparison to saline infused adults, glucose infusion (3.2 +/- 0.1 mg X kg-1 min-1) resulted in a significant rise in plasma glucose and in plasma insulin; and the GPR was reduced to 0.1 mg X kg-1 min-1 (range, 0-0.3) from 2.0 mg X kg-1 min-1 (range, 1.5-2.4). 5 of 13 preterms and 2 of 7 term infants had persistent GPR during glucose infusion; in contrast, the GPR in all adults was unmeasurable. There was no correlation between the plasma glucose concentration and the GPR in the newborn or in the adult. Both newborns and adults did have a correlation between plasma insulin concentration and the GPR; however, there was considerable variability in the neonate. We conclude that there are significant developmental differences in neonatal glucose homeostasis and that insulin is important in neonatal hormonal control of glucose production.  相似文献   

8.
We have minimized methodological errors in the isotope dilution technique by using stable isotope, [6,6-2H2]glucose, thus avoiding the problem of contamination of tritiated glucose tracers and, by maintaining a constant plasma tracer enrichment have reduced error due to mixing transients. Using these modifications we have calculated hepatic glucose production in 20 patients with non-insulin-dependent diabetes mellitus during low (1 mU kg-1 min-1) and high (8 mU kg-1 min-1) dose insulin infusions. Mean fasting hepatic glucose production was 14.2 +/- 0.8 mumol kg-1 min-1. This suppressed by only 68% to 4.6 +/- 0.8 mumol kg-1 min-1 during the low-dose insulin infusion (plasma insulin 0.85 +/- 0.05 nmol l-1) and did not suppress further during the high-dose insulin infusion (plasma insulin 14.55 +/- 0.83 nmol l-1). Hepatic glucose production was significantly higher than zero throughout the study. Thus, we have found that minimization of known errors in the isotope dilution technique results in physiologically plausible and significantly positive values for hepatic glucose production indicating that the liver is resistant to insulin in patients with non-insulin-dependent diabetes mellitus.  相似文献   

9.
To examine whether autoregulatory dilation of preglomerular vessels enhances prostaglandin (PG)E2 and renin release during arachidonic acid infusion, the ureter was occluded or the renal artery constricted in anesthetized dogs. Intrarenal arachidonic acid infusion (40 micrograms X kg-1 X min-1) increased PGE2 release by 41 +/- 17 pmol/min at control pressures and by 149 +/- 60 pmol/min during ureteral occlusion. Arachidonic acid infusion (160 micrograms X kg-1 X min-1) increased PGE2 release by 149 +/- 60 pmol/min at control pressures, by 505 +/- 211 pmol/min during ureteral occlusion and by 581 +/- 201 pmol/min during renal arterial constriction. Thus, PGE2 release during arachidonic acid infusion was trebled by autoregulatory dilation. Arachidonic acid infusion (160 micrograms X kg-1 X min-1) raised renin release by 6 +/- 2 micrograms of angiotensin I per min at control pressures, by 25 +/- 9 micrograms of angiotensin I per min during renal arterial constriction and during ureteral occlusion by 16 +/- 4 micrograms of angiotensin I per min, which was not significantly higher than induced by the lower rate of infusion. Arachidonic acid infusion (160 micrograms X kg-1 X min-1) raised renal blood flow by 54 +/- 5% at control pressures but exerted no vasoactive effect during ureteral occlusion and renal arterial constriction. We conclude that autoregulatory dilation enhances the stimulatory effects of arachidonic acid on renal PG synthesis. Both increased intrarenal PG concentration and autoregulatory dilation may contribute to enhancement of renin release. The stimulatory effects of arachidonic acid on PG synthesis and renin release are independent of the vasoactive effects of arachidonic acid.  相似文献   

10.
Despite ample evidence that the kidney can both produce and use appreciable amounts of glucose, the human kidney is generally regarded as playing a minor role in glucose homeostasis. This view is based on measurements of arteriorenal vein glucose concentrations indicating little or no net release of glucose. However, inferences from net balance measurements do not take into consideration the simultaneous release and uptake of glucose by the kidney. Therefore, to assess the contribution of release and uptake of glucose by the human kidney to overall entry and removal of plasma glucose, we used a combination of balance and isotope techniques to measure renal glucose net balance, fractional extraction, uptake and release as well as overall plasma glucose appearance and disposal in 10 normal volunteers under basal postabsorptive conditions and during a 3-h epinephrine infusion. In the basal postabsorptive state, there was small but significant net output of glucose by the kidney (66 +/- 22 mumol.min-1, P = 0.016). However, since renal glucose fractional extraction averaged 2.9 +/- 0.3%, there was considerable renal glucose uptake (2.3 +/- 0.2 mumol.kg-1.min-1) which accounted for 20.2 +/- 1.7% of systemic glucose disposal (11.4 +/- 0.5 mumol.kg-1.min-1). Renal glucose release (3.2 +/- 0.2 mumol.kg-1.min-1) accounted for 27.8 +/- 2.1% of systemic glucose appearance (11.4 +/- 0.5 mumol.kg-1.min-1). Epinephrine infusion, which increased plasma epinephrine to levels observed during hypoglycemia (3722 +/- 453 pmol/liter) increased renal glucose release nearly twofold (5.2 +/- 0.5 vs 2.8 +/- 0.1 mol.kg-1.min-1, P = 0.01) so that at the end of the infusion, renal glucose release accounted for 40.3 +/- 5.5% of systemic glucose appearance and essentially all of the increase in systemic glucose appearance. These observations suggest an important role for the human kidney in glucose homeostasis.  相似文献   

11.
To examine the effects of physiological insulin concentrations on the renin-angiotensin and sympathetic nervous systems, healthy volunteers were studied by the euglycaemic glucose clamp technique with sequential 60 min 0.5 and 1.0 mU kg-1 min-1 insulin infusions and, subsequently, by a control infusion simulating clamp conditions. Plasma renin activity increased from 0.8 +/- 0.1 ng ml-1 h-1 basally to 1.0 +/- 0.2 ng ml-1 h-1 during the 0.5 mU infusion to 1.4 +/- 0.1 ng ml-1 h-1 during the 1 mU infusion but did not change during control infusion (0.9 +/- 0.3 ng ml-1h-1 to 0.9 +/- 0.2 ng ml-1h-1 to 1.0 +/- 0.1 ng ml-1h-1) (P less than 0.001 insulin vs. control by ANOVAR). Plasma angiotensin II increased during insulin (21.2 +/- 1.8 to 25.2 +/- 2.3 to 29.3 +/- 2.4 pg ml-1) but not during control infusion (24.0 +/- 2.8 to 23.6 +/- 2.6 to 23.5 +/- 2.5 pg ml-1) (P less than 0.001 insulin vs. control). Serum aldosterone did not change significantly during either infusion (insulin: 239 +/- 89 pmol l-1 to 237 +/- 50 pmol l-1 to 231 +/- 97 pmol l-1, control: 222 +/- 79 to 237 +/- 50 to 213 +/- 97 pmol l-1). Plasma noradrenaline increased to a greater extent during insulin (1.03 +/- 0.2 to 1.14 +/- 0.8 to 1.27 +/- 0.17 nmol l-1) than control infusion (0.86 +/- 0.09 to 0.97 +/- 0.09 to 0.99 +/- 0.09 nmol 1-1 (P less than 0.01 insulin vs. control). Changes in mean systolic blood pressure during insulin infusion were significantly different from control (+ 3 vs. -4 mmHg, P less than 0.001). In conclusion acute hyperinsulinaemia within the physiological range increases circulating hormones of the renin-angiotensin and sympathetic nervous systems and also increases systolic blood pressure.  相似文献   

12.
OBJECTIVE: The gut hormone glucagon-like peptide 1 (GLP-1) has insulinotropic and anorectic effects during intravenous infusion and has been proposed as a new treatment for type 2 diabetes and obesity. The effect of a single subcutaneous injection is brief because of rapid degradation. We therefore sought to evaluate the effect of infusion of GLP-1 for 48 h in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS: We infused GLP-1 (2.4 pmol.kg-1.min-1) or saline subcutaneously for 48 h in randomized order in six patients with type 2 diabetes to evaluate the effect on appetite during fixed energy intake and on plasma glucose, insulin, glucagon, postprandial lipidemia, blood pressure, heart rate, and basal metabolic rate. RESULTS: The infusion resulted in elevations of the plasma concentrations of intact GLP-1 similar to those observed after intravenous infusion of 1.2 pmol.kg-1.min-1, previously shown to lower blood glucose effectively in type 2 diabetic patients. Fasting plasma glucose (day 2) decreased from 14.1 +/- 0.9 (saline) to 12.2 +/- 0.7 mmol/l (GLP-1), P = 0.009, and 24-h mean plasma glucose decreased from 15.4 +/- 1.0 to 13.0 +/- 1.0 mmol/l, P = 0.0009. Fasting and total area under the curve for insulin and C-peptide levels were significantly higher during the GLP-1 administration, whereas glucagon levels were unchanged. Neither triglycerides nor free fatty acids were affected. GLP-1 administration decreased hunger and prospective food intake and increased satiety, whereas fullness was unaffected. No side effects during GLP-1 infusion were recorded except for a brief cutaneous reaction. Basal metabolic rate and heart rate did not change significantly during GLP-1 administration. Both systolic and diastolic blood pressure tended to be lower during the GLP-1 infusion. CONCLUSIONS: We conclude that 48-h continuous subcutaneous infusion of GLP-1 in type 2 diabetic patients 1) lowers fasting as well as meal-related plasma glucose, 2) reduces appetite, 3) has no gastrointestinal side effects, and 4) has no negative effect on blood pressure.  相似文献   

13.
OBJECTIVE: To determine whether the plasma glucose-lowering effects of sulfonylureas and acute submaximal exercise are additive and, accordingly, to determine whether they may increase the risk of hypoglycemia when combined in fasting patients. RESEARCH DESIGN AND METHODS: Eight postabsorptive type 2 diabetic patients were examined at three occasions: after oral sulfonylurea (7 mg glibenclamide), during 60 min of ergometer cycle exercise at 57 +/- 3% of VO2max, and during exercise after glibenclamide. RESULTS: Heart rate, VO2, and lactate responses to exercise were comparable (P > 0.05) on days with and without glibenclamide. Plasma insulin concentrations were always increased by glibenclamide, and they were lowered identically by exercise with and without glibenclamide. However, throughout exercise, absolute concentrations of insulin were lower on days without glibenclamide compared with days with glibenclamide (34.5 +/- 4.7 vs. 47.4 +/- 5.5 pmol/l; P < 0.05). At the start of exercise, glucose concentrations were similar between experiments (P > 0.05). The rate of decrease in glucose during exercise was higher (P < 0.05) on days with both glibenclamide and exercise, compared with days with glibenclamide alone and days with exercise alone (-0.035 +/- 0.009 vs. -0.016 +/- 0.002 and -0.022 +/- 0.005 mmol.l-1.min-1, respectively). Consequently, the glucose nadir was lower on days with glibenclamide and exercise than on days with glibenclamide or exercise alone (6.7 +/- 1.1 vs. 8.1 +/- 0.9 and 7.6 +/- 1.0 mmol/l, respectively; P < 0.05). During exercise, the rate of appearance of plasma glucose determined by 3-[3H]glucose infusion was lower on days with glibenclamide than on days without glibenclamide (2.3 +/- 0.1 vs. 2.9 +/- 0.1 mg.min-1.kg-1; P < 0.05). In contrast, glucose clearance was identical (P > 0.05). CONCLUSIONS: In postabsorptive type 2 diabetic patients, the hypoglycemic action of glibenclamide and exercise is enhanced when the treatments are combined. The interaction reflects an increased inhibition by glibenclamide-enhanced insulin levels of hepatic glucose production when hepatic glucose production is accelerated by exercise.  相似文献   

14.
To investigate the temporal response of the liver to insulin and portal glucose delivery, somatostatin was infused into four groups of 42-h-fasted, conscious dogs (n = 6/group), basal insulin and glucagon were replaced intraportally, and hyperglycemia was created via a peripheral glucose infusion for 90 min (period 1). This was followed by a 240-min experimental period (period 2) in which hyperglycemia was matched to period 1 and either no changes were made (CON), a fourfold rise in insulin was created (INS), a portion of the glucose (22.4 mumol.kg-1.min-1) was infused via the portal vein (Po), or a fourfold rise in insulin was created in combination with portal glucose infusion (INSPo). Arterial insulin levels were similar in all groups during period 1 (approximately 45 pM) and were 45 +/- 9, 154 +/- 20, 43 +/- 7, and 128 +/- 14 pM during period 2 in CON, INS, Po, and INSPo, respectively. The hepatic glucose load was similar between periods and among groups (approximately 278 mumol.kg-1.min-1). Net hepatic glucose output was similar among groups during period 1 (approximately 0.1 mumol.kg-1.min-1) and did not change significantly in CON during period 2. In INS net hepatic glucose uptake (NHGU; mumol.kg-1.min-1) was -3.8 +/- 3.3 at 15 min of period 2 and did not reach a maximum (-15.9 +/- 6.6) until 90 min. In contrast, NHGU reached a maximum of -13.0 +/- 3.7 in Po after only 15 min of period 2. In INSPo, NHGU reached a maximum (-23.6 +/- 3.5) at 60 min. Liver glycogen accumulation during period 2 was 21 +/- 10, 84 +/- 17, 65 +/- 16, and 134 +/- 17 mumol/gram in CON, INS, Po, and INSPo, respectively. The increment (period 1 to period 2) in the active form of liver glycogen synthase was 0.7 +/- 0.4, 6.5 +/- 1.2, 2.8 +/- 1.0, and 8.5 +/- 1.3% in CON, INS, Po, and INSPo, respectively. Thus, in contrast to insulin, the portal signal rapidly activates NHGU. In addition, the portal signal independent of a rise in insulin, can cause glycogen accumulation in the liver.  相似文献   

15.
OBJECTIVE: Animal and in vitro studies indicate that a decrease in beta-cell insulin secretion, and thus a decrease in tonic alpha-cell inhibition by intraislet insulin, may be an important factor for the increase in glucagon secretion during hypoglycemia. However, in humans this role of decreased intraislet insulin is still unclear. RESEARCH DESIGN AND METHODS: We studied glucagon responses to hypoglycemia in 14 nondiabetic subjects on two separate occasions. On both occasions, insulin was infused from 0 to 120 min to induce hypoglycemia. On one occasion, somatostatin was infused from -60 to 60 min to suppress insulin secretion, so that the decrement in intraislet insulin during the final 60 min of hypoglycemia would be reduced. On the other occasion, subjects received an infusion of normal saline instead of the somatostatin. RESULTS: During the 2nd h of the insulin infusion, when somatostatin or saline was no longer being infused, plasma glucose ( approximately 2.6 mmol/l) and insulin levels ( approximately 570 pmol/l) were comparable in both sets of experiments (both P > 0.4). In the saline experiments, insulin secretion remained unchanged from baseline (-90 to -60 min) before insulin infusion and decreased from 1.20 +/- 0.12 to 0.16 +/- 0.04 pmol . kg(-1) . min(-1) during insulin infusion (P < 0.001). However, in the somatostatin experiments, insulin secretion decreased from 1.18 +/- 0.12 pmol . kg(-1) . min(-1) at baseline to 0.25 +/- 0.09 pmol . kg(-1) . min(-1) before insulin infusion so that it did not decrease further during insulin infusion (-0.12 +/- 0.10 pmol . kg(-1) . min(-1), P = 0.26) indicating the complete lack of a decrement in intraislet insulin during hypoglycemia. This was associated with approximately 30% lower plasma glucagon concentrations (109 +/- 7 vs. 136 +/- 9 pg/ml, P < 0.006) and increments in plasma glucagon above baseline (41 +/- 8 vs. 67 +/- 11 pg/ml, P < 0.008) during the last 15 min of the hypoglycemic clamp. In contrast, increases in plasma growth hormone were approximately 70% greater during hypoglycemia after somatostatin infusion (P < 0.007), suggesting that to some extent the increases in plasma glucagon might have reflected a rebound in glucagon secretion. CONCLUSIONS: These results provide direct support for the intraislet insulin hypothesis in humans. However, the exact extent to which a decrement in intraislet insulin accounts for the glucagon responses to hypoglycemia remains to be established.  相似文献   

16.
Insulin resistance after surgery: normalization by insulin treatment   总被引:7,自引:0,他引:7  
1. Injury is known to be associated with variable degrees of tissue insensitivity to insulin. We measured insulin resistance in a group of non-obese, glucose-tolerant patients undergoing major elective surgery with an uncomplicated post-operative course. 2. Shortly after surgery, hyperglycaemia (7.3 +/- 0.6 versus 4.2 +/- 0.3 mmol/l glucose pre-surgery, mean +/- SEM, P less than 0.01) with normal insulin concentrations (73 +/- 15 versus 64 +/- 18 pmol/l) suggested the presence of insulin resistance. Counter-regulatory hormones were raised, whole-body protein oxidation was doubled (P less than 0.01) and energy expenditure was up by 18% (P less than 0.01). 3. Insulin sensitivity was quantified by clamping plasma glucose concentrations at 5.6 mmol/l during 24 h of total parenteral nutrition (15% protein, 55% glucose and 30% fat, supplying 1.25 times the measured resting energy expenditure) with a variable infusion of exogenous insulin. After surgery, eight times more insulin was needed than before surgery (14.14 +/- 1.15 versus 1.78 +/- 0.29 pmol min-1 kg-1, P less than 0.001) to maintain euglycemia. 4. After surgery, stimulation of net carbohydrate oxidation (18.8 +/- 1.4 versus 17.2 +/- 1.8 mumol min-1 kg-1 preoperatively, not significant), suppression of lipolysis and lipid oxidation and inhibition of ketogenesis occurred to the same extent as before surgery. Of the infused nutrients, the glucose was all oxidized, amino acids replaced endogenous protein losses (= neutral nitrogen balance) and lipids were stored. Insulin administration caused no further increment in oxygen consumption or energy expenditure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
1. Experimental elevation of plasma non-esterified fatty acid concentrations has been postulated to decrease insulin-stimulated glucose oxidation and storage rates. Possible mechanisms were examined by measuring skeletal muscle glycogen synthase activity and muscle glycogen content before and during hyperinsulinaemia while fasting plasma non-esterified fatty acid levels were maintained. 2. Fasting plasma non-esterified fatty acid levels were maintained in seven healthy male subjects by infusion of 20% (w/v) Intralipid (1 ml/min) for 120 min before and during a 240 min hyperinsulinaemic euglycaemic clamp (100 m-units h-1 kg-1) combined with indirect calorimetry. On the control day, 0.154 mol/l NaCl was infused. Vastus lateralis muscle biopsy was performed before and at the end of the insulin infusion. 3. On the Intralipid study day serum triacylglycerol (2.24 +/- 0.20 versus 0.67 +/- 0.10 mmol/l), plasma nonesterified fatty acid (395 +/- 13 versus 51 +/- 1 mumol/l), blood glycerol (152 +/- 2 versus 11 +/- 1 mumol/l) and blood 3-hydroxybutyrate clamp levels [mean (95% confidence interval)] [81 (64-104) versus 4 (3-5) mumol/l] were all significantly higher (all P less than 0.001) than on the control study day. Lipid oxidation rates were also elevated (1.07 +/- 0.07 versus 0.27 +/- 0.08 mg min-1 kg-1, P less than 0.001). During the clamp with Intralipid infusion, insulin-stimulated whole-body glucose disposal decreased by 28% (from 8.53 +/- 0.77 to 6.17 +/- 0.71 mg min-1 kg-1, P less than 0.005).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The influence of short-term thiazide treatment on peripheral tissue and liver sensitivity to insulin in insulin-dependent diabetes mellitus was determined by the euglycemic insulin clamp technique. A sequential three-step hyperinsulinemic clamp was performed in six insulin-dependent diabetics before and after 2 wk of hydroflumethiazide (HFT) administration in a daily dose of 75 mg. Insulin was infused at rates of 0.5, 2.0, and 4.0 mU X kg-1 X min-1, and each dose was given for at least 120 min. Glucose uptake during the last 30 min of each step was almost identical in the two situations (2.7 +/- 0.6 vs. 2.4 +/- 0.5 mg X kg-1 X min-1, 9.6 +/- 0.9 vs. 9.7 +/- 1.2 mg X kg-1 X min-1, and 12.0 +/- 1.3 vs. 12.6 +/- 1.5 mg X kg-1 X min-1). Serum insulin levels were also similar, and blood glucose was kept at 100 +/- 3, 99 +/- 4, and 97 +/- 3 mg/dl before thiazides and at 93 +/- 6, 93 +/- 6, and 94 +/- 6 mg/dl after thiazides. Another five insulin-dependent diabetics were infused with tritiated glucose followed by insulin infusion at two rates: 0.45 and 1.0 mU X kg-1 X min-1. Basal glucose output was comparable before and after thiazides (3.63 +/- 0.24 vs. 2.97 +/- 0.26 mg X kg-1 X min-1), as was the liver response to increasing insulin concentrations. The metabolic state as assessed by HbA1c and fasting blood glucose did not differ in the two experiments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The administration of exogenous atrial natriuretic peptide (ANP) causes a natriuresis and diuresis in man, but this has, to date, only been demonstrated at plasma ANP concentrations within the high pathological or pharmacological ranges. Evidence that ANP acts physiologically requires the demonstration of a natriuretic effect when it is infused to recreate plasma concentrations similar to those observed after physiological stimuli. We infused human alpha-ANP (1-28) at a calculated rate of 1.2 pmol min-1 kg-1 for 3 h into seven water-loaded normal subjects, achieving plasma ANP concentrations within the upper part of the physiological range. The subjects' resting plasma ANP concentration increased from 3.8 +/- 1.5 to 20.9 +/- 1.9 pmol/l. The infusion of ANP caused a 60% increase of mean urinary sodium excretion from 111 +/- 18 to 182 +/- 30 mumol/min (P less than 0.001) and a 28% increase of mean water excretion from 10.8 +/- 0.8 to 13.8 +/- 1.6 ml/min (P less than 0.01). The infusion suppressed mean plasma renin activity from 1.55 +/- 0.10 to 1.17 +/- 0.06 pmol of ANG I h-1 ml-1 (P less than 0.001). Mean plasma aldosterone concentration (242 +/- 16 basally and 215 +/- 15 pmol/l at the end of ANP infusion) did not change significantly. Pulse rate and blood pressure were unchanged throughout the study. No significant change in any of the variables mentioned above occurred during the infusion of the vehicle alone on a separate study day.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The amount-of-substance rate of glucose metabolism and its sensitivity to the concentration of insulin was quantified in 10 non-diabetic patients with alcoholic cirrhosis of varying severity, using the 'glucose clamp technique'. Fasting glucose and insulin were 5.4 +/- 0.3 mmol/l and 187 +/- 50 pmol/l (mean +/- SEM), respectively. During the hyperglycaemic clamp (blood glucose at 12.5 mmol/l) the glucose metabolic rate (divided by body mass) was 27 +/- 4 mumol X min-1 X kg-1 at an insulin concentration of 998 +/- 158 pmol/l. Thus the insulin sensitivity of the tissue glucose metabolism was 22 +/- 7 m3 X min-1 X kg-1. During the euglycaemic clamp exogenous insulin was given to a concentration of 574 +/- 72 pmol/l. The resulting glucose metabolic rate was 20 +/- 4 mumol X min-1 X kg-1 and the insulin sensitivity the same as during hyperglycaemia. The calculated systemic delivery rate of insulin (divided by body surface area) was 783 +/- 172 pmol X min-1 X m-2. Fasting glucagon was 32 +/- 5 pmol/ and only partly depressed by glucose or insulin. In comparison with stated relevant control groups cirrhotics exhibit glucose intolerance characterized by decreased sensitivity to insulin, hyperinsulinaemia due to increased release, and hyperglucagonaemia with decreased suppressibility. There was no relation between clinical or biochemical data of the patients and the above results, suggesting that the abnormal glucose metabolism does not depend directly on the decreased liver function but on a disturbed pancreatic-hepatic-peripheral axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号