首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
Transcranial direct current stimulation (tDCS) effectively modulates cortical excitability. Several studies suggest clinical efficacy in chronic pain syndromes. However, little is known regarding its effects on cortical pain processing. In this double-blind, randomized, cross-over, sham controlled study, we examined the effects of anodal, cathodal, and sham stimulation of the left motor cortex in 16 healthy volunteers using functional imaging during an acute heat pain paradigm as well as pain thresholds, pain intensity ratings, and quantitative sensory testing. tDCS was applied at 1 mA for 15 minutes. Neither cathodal nor anodal tDCS significantly changed brain activation in response to nociceptive stimulation when compared with sham stimulation. However, contrasting the interaction of stimulation modes (anodal/cathodal) resulted in a significant decrease of activation in the hypothalamus, inferior parietal cortex, inferior parietal lobule, anterior insula, and precentral gyrus, contralateral to the stimulation site after anodal stimulation, which showed the opposite behavior after cathodal stimulation. Pain ratings and heat hyperalgesia showed only a subclinical pain reduction after anodal tDCS. Larger-scale clinical trials using higher tDCS intensities or longer durations are necessary to assess the neurophysiological effect and subsequently the therapeutic potential of tDCS.  相似文献   

2.
Limb amputation may lead to chronic painful sensations referred to the absent limb, ie phantom limb pain (PLP), which is likely subtended by maladaptive plasticity. The present study investigated whether transcranial direct current stimulation (tDCS), a noninvasive technique of brain stimulation that can modulate neuroplasticity, can reduce PLP. In 2 double-blind, sham-controlled experiments in subjects with unilateral lower or upper limb amputation, we measured the effects of a single session of tDCS (2 mA, 15 min) of the primary motor cortex (M1) and of the posterior parietal cortex (PPC) on PLP, stump pain, nonpainful phantom limb sensations and telescoping. Anodal tDCS of M1 induced a selective short-lasting decrease of PLP, whereas cathodal tDCS of PPC induced a selective short-lasting decrease of nonpainful phantom sensations; stump pain and telescoping were not affected by parietal or by motor tDCS. These findings demonstrate that painful and nonpainful phantom limb sensations are dissociable phenomena. PLP is associated primarily with cortical excitability shifts in the sensorimotor network; increasing excitability in this system by anodal tDCS has an antalgic effect on PLP. Conversely, nonpainful phantom sensations are associated to a hyperexcitation of PPC that can be normalized by cathodal tDCS. This evidence highlights the relationship between the level of excitability of different cortical areas, which underpins maladaptive plasticity following limb amputation and the phenomenology of phantom limb, and it opens up new opportunities for the use of tDCS in the treatment of PLP.  相似文献   

3.
Koivisto M  Silvanto J 《NeuroImage》2012,59(2):1608-1614
Interactions between the posterior parietal cortex and the early visual cortex have been proposed to play a central role in the binding of visual features into coherent objects. Here we investigated the importance of these interactions by contrasting the time windows at which the early visual cortex (V1/V2) and the angular gyrus (AG) play a causal role in visual feature binding. Transcranial magnetic stimulation was applied over these areas at different latencies during a visual task requiring binding. The contribution of V1/V2 was critical for feature detection 90-120 ms after the onset of the stimulus. When visual binding was required, an additional late time window (lasting until 240 ms after stimulus onset) was observed. The contribution of AG was found to be necessary for visual binding between 90 ms and 180 ms, overlapping with the “early” feature detection stage in V1/V2 and peaking around 180 ms. That the late V1/V2 time window overlaps and even extends beyond the peak time window of AG is consistent with the view that reentrant processing between higher areas and early visual cortex is necessary for visual binding.  相似文献   

4.
Pain following injury to the nervous system is characterized by changes in sensory processing including pain. Although there are many studies describing pain evoked by peripheral stimulation, we have recently reported that pain can be evoked in subjects with complete spinal cord injury (SCI) during a motor imagery task. In this study, we have used functional magnetic resonance imaging to explore brain sites underlying the expression of this phenomenon. In 9 out of 11 subjects with complete thoracic SCI and below-level neuropathic pain, imagined foot movements either evoked pain in a previously non-painful region or evoked a significant increase in pain within the region of on-going pain (3.2 ± 0.7–5.2 ± 0.8). In both controls (n = 19) and SCI subjects, movement imagery evoked signal increases in the supplementary motor area and cerebellar cortex. In SCI subjects, movement imagery also evoked increases in the left primary motor cortex (MI) and the right superior cerebellar cortex. In addition, in the SCI subjects, the magnitude of activation in the perigenual anterior cingulate cortex and right dorsolateral prefrontal cortex was significantly correlated with absolute increases in pain intensity. These regions expanded to include right and left anterior insula, supplementary motor area and right premotor cortex when percentage change in pain intensity was examined. This study demonstrates that in SCI subjects with neuropathic pain, a cognitive task is able to activate brain circuits involved in pain processing independently of peripheral inputs.  相似文献   

5.
Prefrontal transcranial direct current stimulation (tDCS) with the anode placed on the left dorsolateral prefrontal cortex (DLPFC) has been reported to enhance working memory in healthy subjects and to improve mood in major depression. However, its putative antidepressant, cognitive and behavior action is not well understood. Here, we evaluated the distribution of neuronal electrical activity changes after anodal tDCS of the left DLPFC and cathodal tDCS of the right supraorbital region using spectral power analysis and standardized low resolution tomography (sLORETA). Ten healthy subjects underwent real and sham tDCS on separate days in a double-blind, placebo-controlled cross-over trial. Anodal tDCS was applied for 20 min at 2 mA intensity over the left DLPFC, while the cathode was positioned over the contralateral supraorbital region. After tDCS, EEG was recorded during an eyes-closed resting state followed by a working memory (n-back) task. Statistical non-parametric mapping showed reduced left frontal delta activity in the real tDCS condition. Specifically, a significant reduction of mean current densities (sLORETA) for the delta band was detected in the left subgenual PFC, the anterior cingulate and in the left medial frontal gyrus. Moreover, the effect was strongest for the first 5 min (p<0.01). The following n-back task revealed a positive impact of prefrontal tDCS on error rate, accuracy and reaction time. This was accompanied by increased P2- and P3- event-related potentials (ERP) component-amplitudes for the 2-back condition at the electrode Fz. A source localization using sLORETA for the time window 250-450 ms showed enhanced activity in the left parahippocampal gyrus for the 2-back condition. These results suggest that anodal tDCS of the left DLPFC and/or cathodal tDCS of the contralateral supraorbital region may modulate regional electrical activity in the prefrontal and anterior cingulate cortex in addition to improving working memory performance.  相似文献   

6.
Hamzei F  Glauche V  Schwarzwald R  May A 《NeuroImage》2012,59(4):3364-3372
Gray matter (GM) changes have been described after short learning tasks that lasted for 7 days or after external stimulation that lasted for 5 days. However, the early time course of training-dependent GM changes is still unknown. We investigated whether shorter motor training sessions (four times of 30 min training) would induce GM changes. Therefore, T1-weighted MRIs were acquired daily. Because reported GM changes were induced by learning, a close relationship was assumed between the functional activity and the GM changes. Therefore, fMRI was performed in addition to daily T1-weighted MRIs.At the end of the four training sessions (at time point “post”), the test results of the trained motor skill were associated with an increase of GM in secondary cortical motor areas (dPMCright, dPMCleft, SMAleft and the right inferior parietal lobule, IPLright). The earliest time point at which a GM change was detected was 1 day before in the right ventral striatum (by contrasting daily T1-weighted MRI vs. baseline). To analyze whether this very early GM change within the right ventral striatum is associated with those GM changes at time point post (which were associated with motor skill performance), their functional connectivity was investigated over the time period of motor skill training. This analysis revealed an increase of functional coupling between these regions (striatum and cortex) over the training days.The current data demonstrate training-induced short GM plasticity is paralleled by their temporally dynamical process of functional interaction between the cortex and the striatum in response to a motor skill training.  相似文献   

7.
During development from childhood to adulthood the human brain undergoes considerable thinning of the cerebral cortex. Whether developmental cortical thinning is influenced by genes and if independent genetic factors influence different parts of the cortex is not known. Magnetic resonance brain imaging was done in twins at age 9 (N = 190) and again at age 12 (N = 125; 113 repeated measures) to assess genetic influences on changes in cortical thinning. We find considerable thinning of the cortex between over this three year interval (on average 0.05 mm; 1.5%), particularly in the frontal poles, and orbitofrontal, paracentral, and occipital cortices. Cortical thinning was highly heritable at age 9 and age 12, and the degree of genetic influence differed for the various areas of the brain. One genetic factor affected left inferior frontal (Broca's area), and left parietal (Wernicke's area) thinning; a second factor influenced left anterior paracentral (sensory-motor) thinning. Two factors influenced cortical thinning in the frontal poles: one of decreasing influence over time, and another independent genetic factor emerging at age 12 in left and right frontal poles. Thus, thinning of the cerebral cortex is heritable in children between the ages 9 and 12. Furthermore, different genetic factors are responsible for variation in cortical thickness at ages 9 and 12, with independent genetic factors acting on cortical thickness across time and between various brain areas during childhood brain development.  相似文献   

8.
Objective: To investigate whether active anodal transcranial direct current stimulation (tDCS) (of dorsolateral prefrontal cortex [DLPFC] and primary motor cortex [M1]) as compared to sham treatment is associated with changes in sleep structure in fibromyalgia. Methods: Thirty‐two patients were randomized to receive sham stimulation or active tDCS with the anode centered over M1 or DLPFC (2 mA, 20 minutes for five consecutive days). A blinded evaluator rated the clinical symptoms of fibromyalgia. All‐night polysomnography was performed before and after five consecutive sessions of tDCS. Results: Anodal tDCS had an effect on sleep and pain that was specific to the site of stimulation: such as that M1 and DLPFC treatments induced opposite effects on sleep and pain, whereas sham stimulation induced no significant sleep or pain changes. Specifically, whereas M1 treatment increased sleep efficiency (by 11.8%, P = 0.004) and decreased arousals (by 35.0%, P = 0.001), DLPFC stimulation was associated with a decrease in sleep efficiency (by 7.5%, P = 0.02), an increase in rapid eye movement (REM) and sleep latency (by 47.7%, P = 0.0002, and 133.4%, P = 0.02, respectively). In addition, a decrease in REM latency and increase in sleep efficiency were associated with an improvement in fibromyalgia symptoms (as indexed by the Fibromyalgia Impact Questionnaire). Finally, patients with higher body mass index had the worse sleep outcome as indexed by sleep efficiency changes after M1 stimulation. Interpretation: Our findings suggest that one possible mechanism to explain the therapeutic effects of tDCS in fibromyalgia is via sleep modulation that is specific to modulation of primary M1 activity. ?  相似文献   

9.

Background

Transcranial direct current stimulation (tDCS) of the primary motor cortex has been shown to modulate pain and trigeminal nociceptive processing.

Methods

Ten patients with classical trigeminal neuralgia (TN) were stimulated daily for 20 minutes over two weeks using anodal (1 mA) or sham tDCS over the primary motor cortex (M1) in a randomized double-blind cross-over design. Primary outcome variable was pain intensity on a verbal rating scale (VRS 0–10). VRS and attack frequency were assessed for one month before, during and after tDCS. The impact on trigeminal pain processing was assessed with pain-related evoked potentials (PREP) and the nociceptive blink reflex (nBR) following electrical stimulation on both sides of the forehead before and after tDCS.

Results

Anodal tDCS reduced pain intensity significantly after two weeks of treatment. The attack frequency reduction was not significant. PREP showed an increased N2 latency and decreased peak-to-peak amplitude after anodal tDCS. No severe adverse events were reported.

Conclusion

Anodal tDCS over two weeks ameliorates intensity of pain in TN. It may become a valuable treatment option for patients unresponsive to conventional treatment.  相似文献   

10.
目的:探讨右侧额顶网络(FPN)与视空间注意认知功能的关联性和作用机制.方法:选取志愿受试者60人参加本实验,随机分为顶叶组和额叶组.采用持续短阵快速脉冲(cTBS)经颅磁刺激(rTMS)右侧背外侧前额叶(DLPFC)和后顶叶皮质(DPC)后进行注意网络测试(ANT),所有受试者均按照随机顺序进行真/假刺激.结果:持续短阵快速脉冲经颅磁刺激施加于前额叶和后顶叶,不同提示和刺激类型的平均反应时均无明显改变.右侧后顶叶抑制,警觉和定向功能受损(P<0.05);右侧额叶抑制,执行功能受损(P<0.05),而定向功能增强(P<0.05).结论:在视空间注意过程中,右侧后顶叶是定向功能的关键区,右侧前额叶是执行功能的关键区,并且右侧额顶区之间存在竞争性抑制现象.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号