首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Mycobacterium bovis P55 gene, located downstream from the gene that encodes the immunogenic lipoprotein P27, has been characterized. The gene was identical to the open reading frame of the Rv1410c gene in the genome of Mycobacterium tuberculosis H37Rv, annotated as a probable drug efflux protein. Genes similar to P55 were present in all species of the M. tuberculosis complex and other mycobacteria such as Mycobacterium leprae and Mycobacterium avium. By Western blotting, P55 was located in the membrane fraction of M. bovis. When transformed into Mycobacterium smegmatis after cloning, P55 conferred aminoglycoside and tetracycline resistance. The levels of resistance to streptomycin and tetracycline conferred by P55 were decreased in the presence of the protonophore carbonyl cyanide m-chlorophenylhydrazone and the pump inhibitors verapamil and reserpine. M. smegmatis cells expressing the plasmid-encoded P55 accumulated less tetracycline than the control cells. We conclude that P55 is a membrane protein implicated in aminoglycoside and tetracycline efflux in mycobacteria.  相似文献   

2.
3.
4.
Efflux systems are important in determining the efficacy of antibiotics used in the treatment of bacterial infections. In the last decade much attention has been paid to studying the efflux pumps of mycobacteria. New classes of compounds are under investigation for development into potential candidate drugs for the treatment of tuberculosis. Quite often, these have poor bactericidal activities but exhibit excellent target (biochemical) inhibition. Microarray studies conducted in our laboratories for deciphering the mode of action of experimental drugs revealed the presence of putative ABC transporters. Among these transporters, Rv1218c was chosen for studying its physiological relevance in mediating efflux in Mycobacterium tuberculosis. A ΔRv1218c mutant of M. tuberculosis displayed a 4- to 8-fold increase in the inhibitory and bactericidal potency for different classes of compounds. The MICs and MBCs were reversed to wild-type values when the full-length Rv1218c gene was reintroduced into the ΔRv1218c mutant on a multicopy plasmid. Most of the compound classes had significantly better bactericidal activity in the ΔRv1218c mutant than in the wild-type H37Rv, suggesting the involvement of Rv1218c gene product in effluxing these compounds from M. tuberculosis. The implication of these findings on tuberculosis drug discovery is discussed.  相似文献   

5.
The 1,5-diarylpyrrole derivative BM212 was previously shown to be active against multidrug-resistant clinical isolates and Mycobacterium tuberculosis residing within macrophages as well as against Mycobacterium avium and other atypical mycobacteria. To determine its mechanism of action, we identified the cellular target. Spontaneous Mycobacterium smegmatis, Mycobacterium bovis BCG, and M. tuberculosis H37Rv mutants that were resistant to BM212 were isolated. By the screening of genomic libraries and by whole-genome sequencing, we found that all the characterized mutants showed mutations in the mmpL3 gene, allowing us to conclude that resistance to BM212 maps to the MmpL3 protein, a member of the MmpL (mycobacterial membrane protein, large) family. Susceptibility was unaffected by the efflux pump inhibitors reserpine, carbonylcyanide m-chlorophenylhydrazone, and verapamil. Uptake/efflux experiments with [(14)C]BM212 demonstrated that resistance is not driven by the efflux of BM212. Together, these data strongly suggest that the MmpL3 protein is the cellular target of BM212.  相似文献   

6.
Isoxyl (ISO), a thiourea (thiocarlide; 4, 4'-diisoamyloxythiocarbanilide), demonstrated potent activity against Mycobacterium tuberculosis H37Rv (MIC, 2.5 micrograms/ml), Mycobacterium bovis BCG (MIC, 0.5 microgram/ml), Mycobacterium avium (MIC, 2.0 microgram/ml), and Mycobacterium aurum A+ (MIC, 2.0 microgram/ml), resulting in complete inhibition of mycobacteria grown on solid media. Importantly, a panel of clinical isolates of M. tuberculosis from different geographical areas with various drug resistance patterns were all sensitive to ISO in the range of 1 to 10 microgram/ml. In a murine macrophage model, ISO exhibited bactericidal killing of viable intracellular M. tuberculosis in a dose-dependent manner (0.05 to 2.50 microgram/ml). The selective action of ISO on mycolic acid synthesis was studied through the use of [1, 2-14C]acetate labeling of M. tuberculosis H37Rv, M. bovis BCG, and M. aurum A+. At its MIC for M. tuberculosis, ISO inhibited the synthesis of both fatty acids and mycolic acids (alpha-mycolates by 91.6%, methoxymycolates by 94.3%, and ketomycolates by 91.1%); at its MIC in M. bovis BCG, ISO inhibited the synthesis of alpha-mycolates by 87.2% and that of ketomycolates by 88.5%; and the corresponding inhibitions for M. aurum A+ were 87.1% for alpha-mycolates, 87.2% for ketomycolates, and 86.5% for the wax-ester mycolates. A comparison with isoniazid (INH) and ethionamide (ETH) demonstrated marked similarity in action, i.e., inhibition of the synthesis of all kinds of mycolic acids. However, unlike INH and ETH, ISO also inhibited the synthesis of shorter-chain fatty acids. ISO showed no acute toxicity against primary macrophage cell cultures as demonstrated by diminution of redox activity. A homologous series of ISO derivatives were synthesized. Most derivatives were as effective or more effective than the parent compound in the agar proportion assay. Thus, these thioureas, like INH and ETH, specifically inhibit mycolic acid synthesis and show promise in counteracting a wide variety of drug-sensitive and -resistant strains of M. tuberculosis.  相似文献   

7.
The Mycobacterium tuberculosis Rv2686c-Rv2687c-Rv2688c operon, encoding an ABC transporter, conferred resistance to ciprofloxacin and, to a lesser extent, norfloxacin, moxifloxacin, and sparfloxacin to Mycobacterium smegmatis. The resistance level decreased in the presence of the efflux pump inhibitors reserpine, carbonyl cyanide m-chlorophenylhydrazone, and verapamil. Energy-dependent efflux of ciprofloxacin from M. smegmatis cells containing the Rv2686c-Rv2687c-Rv2688c operon was observed.  相似文献   

8.
OBJECTIVES: The aim of this study was to characterize the efflux pump Tap from Mycobacterium fortuitum, to test its sensitivity to well known efflux inhibitors, to study the interaction between tetracycline and these compounds and to test the ability of these compounds to overcome efflux pump-mediated tetracycline resistance. For all these studies, we produced Tap protein in Mycobacterium smegmatis. METHODS: Antibiotic susceptibility tests, tetracycline uptake/efflux experiments and checkerboard synergy tests. RESULTS: Tetracycline uptake/efflux experiments showed that Tap protein from M. fortuitum uses the electrochemical gradient across the cytoplasmic membrane to extrude tetracycline from the cell. This efflux activity is inhibited by carbonyl cyanide m-chlorophenylhydrazone (CCCP) and reserpine, consistent with the decrease in MIC observed in antibiotic susceptibility testing in the presence of these inhibitors. Accumulation was not inhibited in experiments in which o-vanadate and chlorpromazine (CPZ) were tested. Inhibitor-treated cells used glycerol as a carbon source to re-establish the electrochemical gradient across the membrane and to restore efflux activity. CCCP, reserpine and CPZ reduced the MIC of tetracycline in the M. smegmatis strain expressing the Tap protein, whereas o-vanadate increased the MIC. We also observed synergy between tetracycline and CPZ or reserpine, and antagonism with o-vanadate. CONCLUSIONS: The Tapfor efflux pump uses the electrochemical gradient to extrude tetracycline from the cell. This efflux activity can be inhibited by several compounds. This suggests that similar compounds could be used to overcome antibiotic resistance mediated by efflux pumps.  相似文献   

9.
Active efflux of drugs mediated by efflux pumps that confer drug resistance is one of the mechanisms developed by bacteria to counter the adverse effects of antibiotics and chemicals. To understand these efflux mechanisms in Mycobacterium tuberculosis, we generated knockout (KO) mutants of four efflux pumps of the pathogen belonging to different classes. We measured the MICs and kill values of two different compound classes on the wild type (WT) and the efflux pump (EP) KO mutants in the presence and absence of the efflux inhibitors verapamil and l-phenylalanyl-l-arginyl-β-naphthylamide (PAβN). Among the pumps studied, the efflux pumps belonging to the ABC (ATP-binding cassette) class, encoded by Rv1218c, and the SMR (small multidrug resistance) class, encoded by Rv3065, appear to play important roles in mediating the efflux of different chemical classes and antibiotics. Efflux pumps encoded by Rv0849 and Rv1258c also mediate the efflux of these compounds, but to a lesser extent. Increased killing is observed in WT M. tuberculosis cells by these compounds in the presence of either verapamil or PAβN. The efflux pump KO mutants were more susceptible to these compounds in the presence of efflux inhibitors. We have shown that these four efflux pumps of M. tuberculosis play a vital role in mediating efflux of different chemical scaffolds. Inhibitors of one or several of these efflux pumps could have a significant impact in the treatment of tuberculosis. The identification and characterization of Rv0849, a new efflux pump belonging to the MFS (major facilitator superfamily) class, are reported.  相似文献   

10.
11.
The rpoB gene of Mycobacterium tuberculosis.   总被引:22,自引:2,他引:22       下载免费PDF全文
A portion of the Mycobacterium tuberculosis gene encoding the beta subunit of RNA polymerase (rpoB) was amplified by PCR using degenerate oligonucleotides and used as a hybridization probe to isolate plasmid clones carrying the entire rpoB gene of M. tuberculosis H37Rv, a virulent, rifampin-susceptible strain. Sequence analysis of a 5,084-bp SacI genomic DNA fragment revealed a 3,534-bp open reading frame encoding an 1,178-amino-acid protein with 57% identity with the Escherichia coli beta subunit. This SacI fragment also carried a portion of the rpoC gene located 43 bp downstream from the 3' end of the rpoB open reading frame; this organization is similar to that of the rpoBC operon of E. coli. The M. tuberculosis rpoB gene was cloned into the shuttle plasmid pMV261 and electroporated into the LR223 strain of Mycobacterium smegmatis, which is highly resistant to rifampin (MIC > 200 micrograms/ml). The resulting transformants were relatively rifampin susceptible (MIC = 50 micrograms/ml). Using PCR mutagenesis techniques, we introduced a specific rpoB point mutation (associated with clinical strains of rifampin-resistant M. tuberculosis) into the cloned M. tuberculosis rpoB gene and expressed this altered gene in the LR222 strain of M. smegmatis, which is susceptible to rifampin (MIC = 25 micrograms/ml). The resulting transformants were rifampin resistant (MIC = 200 micrograms/ml). The mutagenesis and expression strategy of the cloned M. tuberculosis rpoB gene that we have employed in this study will allow us to determine the rpoB mutations that are responsible for rifampin resistance in M. tuberculosis.  相似文献   

12.
It is estimated that one-third of the world's population is infected with Mycobacterium tuberculosis. Infection typically remains latent, but it can reactivate to cause clinical disease. The only vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG), is largely ineffective, and ways to enhance its efficacy are being developed. Of note, the candidate booster vaccines currently under clinical development have been designed to improve BCG efficacy but not prevent reactivation of latent infection. Here, we demonstrate that administering a multistage vaccine that we term H56 in the adjuvant IC31 as a boost to vaccination with BCG delays and reduces clinical disease in cynomolgus macaques challenged with M. tuberculosis and prevents reactivation of latent infection. H56 contains Ag85B and ESAT-6, which are two of the M. tuberculosis antigens secreted in the acute phase of infection, and the nutrient stress-induced antigen Rv2660c. Boosting with H56/IC31 resulted in efficient containment of M. tuberculosis infection and reduced rates of clinical disease, as measured by clinical parameters, inflammatory markers, and improved survival of the animals compared with BCG alone. Boosted animals showed reduced pulmonary pathology and extrapulmonary dissemination, and protection correlated with a strong recall response against ESAT-6 and Rv2660c. Importantly, BCG/H56-vaccinated monkeys did not reactivate latent infection after treatment with anti-TNF antibody. Our results indicate that H56/IC31 boosting is able to control late-stage infection with M. tuberculosis and contain latent tuberculosis, providing a rationale for the clinical development of H56.  相似文献   

13.
目的 构建结核分枝杆菌Rv1884c和Rv0867c基因的原核表达质粒,获得结核分枝杆菌Rvl884c和Rv0867c基因的表达蛋白,并初步研究其促生长作用.方法 制备结核分枝杆菌基因组DNA,采用PCR技术扩增目的 基因片段;将2个片段分别克隆入克隆载体pGEx-4T-1和pUC19,再分别克隆入原核表达载体pGEX-4T-1和pPRO-EXHT,经序列测定证实正确后,再经异丙基硫代-β-D半乳糖苷(IPTG)诱导表达GST标记的Rv1884c融合蛋白和His标记的Rv0867c融合蛋白;用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)分析重组蛋白的相对分子质量大小及表达形式.结果 成功扩增出了结核分枝杆菌Rv1884c和Rv0867c基因,构建了具有正确基因序列的质粒载体pGEX-4T-1-Rv1884c和pPRO-EXHT-Rv0867c,转化人大肠杆菌DH5α中经诱导产生高水平的表达产物.经SDS分析,在相对分子质量为45 000和80 000处出现新生蛋白带,凝胶薄层扫描检测表达量分别约占菌体蛋白的18.3%和23.7%.用GSTrap FF亲和层析柱和Ni2+-NTA纯化柱进行蛋白纯化,并研究这两种蛋白对藤黄微球菌、BCG和结核分枝杆菌H37Rv的促生长作用.结论 成功克隆了结核分枝杆菌Rv1884c和Rv0867c基因并得到了其大肠杆菌表达产物,为进一步研究Rv1884c和Rv0867c基因蛋白的活性及其功能,以及研究结核分枝杆菌快速促生长作用奠定了基础.  相似文献   

14.
The in vitro activity of rifapentine and its metabolite, 25-O:-desacetylrifapentine, as compared with that of rifampicin and rifabutin, was determined against Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium bovis and M. bovis BCG. MICs were determined radiometrically and by the 1% proportional method using Middlebrook 7H11 agar. The bactericidal effect of the drugs was determined in parallel at selected concentrations. For drugsusceptible isolates of M. tuberculosis, the Bactec MICs of rifapentine and 25-O:-desacetylrifapentine were 0.03-0.06 mg/L and 0. 125-0.25 mg/L, respectively. Similar MICs were obtained for M. africanum (0.03-0.125 and 0.125-0.50 mg/L, respectively), and M. bovis (0.063-0.25 and 0.125-1.0 mg/L, respectively), but MICs were considerably lower for M. bovis BCG (0.008-0.063 mg/L for rifapentine and 0.016-0.125 mg/L for its metabolite). In general, MICs determined using 7H11 agar medium were usually one or two dilutions higher than those obtained using Bactec broth. When compared with rifampicin and rifabutin, the inhibitory activity of rifapentine for drug-susceptible isolates was roughly equal to that of rifabutin, and the inhibitory activity of 25-O:-desacetylrifapentine was comparable to that of rifampicin; however, rifapentine was somewhat more bactericidal than rifabutin at equal concentrations. Clinical isolates of M. tuberculosis with a high degree of resistance to rifampicin (MIC >/= 32 mg/L) were also highly resistant to rifabutin, rifapentine and 25-O:-desacetylrifapentine, although the MICs of rifabutin in this case were somewhat lower than the MICs of rifapentine.  相似文献   

15.
By using the radiometric BACTEC 460-TB methodology, the inhibitory and bactericidal activity of the optically active L-isomer of ofloxacin (levofloxacin) was compared with those of the D-isomer and the commercially available mixture containing equal amounts of DL-isomers (ofloxacin) against the Mycobacterium tuberculosis complex (type strain H37Rv, a panel of drug-susceptible and -resistant clinical isolates including multidrug-resistant isolates of M. tuberculosis, as well as M. africanum, M. bovis, and M. bovis BCG). Levofloxacin MICs (range 0.50 to 0.75 microgram/ml) were about 1 dilution lower than those of ofloxacin (MIC range, 0.75 to 1.00 microgram/ml) and 5 to 6 dilutions lower than those of the D-isomer (MIC range, 32 to 60 micrograms/ml). The MICs of levofloxacin, ofloxacin, and D-ofloxacin at which 90% of the strains are inhibited were 0.50, 1.00, and 64 micrograms/ml, respectively. The multidrug-resistant M. tuberculosis strains resistant to first-line drugs were as susceptible to quinolones as the wild-type drug-susceptible isolates. Levofloxacin at 0.5 microgram/ml showed bactericidal activity comparable to the activities of 1.0 microgram of ofloxacin per ml and 64 micrograms of D-ofloxacin per ml, with MBCs within the range of 0.5 to 2.0 micrograms/ml, compared with MBCs of 0.75 to 4.0 micrograms of ofloxacin per ml for M. tuberculosis, M. africanum, M. bovis BCG. Combination testing of sub-MICs of levolofoxacin with other first-line (isoniazid, rifampin, and ethambutol) and second-line (amikacin and clofazimine) antituberculous drugs was evaluated with various two-, three-, and four-drug combinations; enhanced drug activity was observed in 8 of 25, 12 of 20, and 8 of 15 tests, respectively, indicating that levofloxacin acts in synergy with other antituberculous drugs.  相似文献   

16.
Peptide deformylase inhibitors as potent antimycobacterial agents   总被引:2,自引:0,他引:2       下载免费PDF全文
Peptide deformylase (PDF) catalyzes the hydrolytic removal of the N-terminal formyl group from nascent proteins. This is an essential step in bacterial protein synthesis, making PDF an attractive target for antibacterial drug development. Essentiality of the def gene, encoding PDF from Mycobacterium tuberculosis, was demonstrated through genetic knockout experiments with Mycobacterium bovis BCG. PDF from M. tuberculosis strain H37Rv was cloned, expressed, and purified as an N-terminal histidine-tagged recombinant protein in Escherichia coli. A novel class of PDF inhibitors (PDF-I), the N-alkyl urea hydroxamic acids, were synthesized and evaluated for their activities against the M. tuberculosis PDF enzyme as well as their antimycobacterial effects. Several compounds from the new class had 50% inhibitory concentration (IC50) values of <100 nM. Some of the PDF-I displayed antibacterial activity against M. tuberculosis, including MDR strains with MIC90 values of <1 microM. Pharmacokinetic studies of potential leads showed that the compounds were orally bioavailable. Spontaneous resistance towards these inhibitors arose at a frequency of < or =5 x 10(-7) in M. bovis BCG. DNA sequence analysis of several spontaneous PDF-I-resistant mutants revealed that half of the mutants had acquired point mutations in their formyl methyltransferase gene (fmt), which formylated Met-tRNA. The results from this study validate M. tuberculosis PDF as a drug target and suggest that this class of compounds have the potential to be developed as novel antimycobacterial agents.  相似文献   

17.
The in-vitro susceptibility of Mycobacterium tuberculosis, M. bovis, and M. kansasii to amoxycillin alone and in combination with 2 mg/l of clavulanic acid was evaluated by broth dilution. The MIC90 of amoxycillin plus clavulanic acid was 4 mg/l compared with greater than 32 mg/l for amoxycillin alone when tested against M. tuberculosis (n = 27). M. bovis (n = 8) was the most susceptible species with an MIC90 of amoxycillin 8 mg/l, compared with 0.5 mg/l for the combination. M. kansasii (n = 6), with an MIC90 of 16 mg/l for amoxycillin plus clavulanic acid was more resistant than either M. tuberculosis or M. bovis. Ticarcillin plus clavulanic acid with an MIC90 of 32 mg/l was less active against M. tuberculosis (n = 28) than amoxycillin plus clavulanic acid. The addition of clavulanic acid to amoxycillin greatly improves its in-vitro activity against M. tuberculosis and M. bovis.  相似文献   

18.
19.
Pyrazinamide (PZA), an analog of nicotinamide, is a prodrug that requires conversion to the bactericidal compound pyrazinoic acid (POA) by the bacterial pyrazinamidase (PZase) activity of nicotinamidase to show activity against Mycobacterium tuberculosis. Mutations leading to a loss of PZase activity cause PZA resistance in M. tuberculosis. M. kansasii is naturally resistant to PZA and has reduced PZase activity along with an apparently detectable nicotinamidase activity. The role of the reduction in PZase activity in the natural PZA resistance of M. kansasii is unknown. The MICs of PZA and POA for M. kansasii were determined to be 500 and 125 micrograms/ml, respectively. Using [14C]PZA and [14C]nicotinamide, we found that M. kansasii had about 5-fold-less PZase activity and about 25-fold-less nicotinamidase activity than M. tuberculosis. The M. kansasii pncA gene was cloned on a 1.8-kb BamHI DNA fragment, using M. avium pncA probe. Sequence analysis showed that the M. kansasii pncA gene encoded a protein with homology to its counterparts from M. tuberculosis (69.9%), M. avium (65.6%), and Escherichia coli (28.5%). Transformation of naturally PZA-resistant M. bovis BCG with M. kansasii pncA conferred partial PZA susceptibility. Transformation of M. kansasii with M. avium pncA caused functional expression of PZase and high-level susceptibility to PZA, indicating that the natural PZA resistance in M. kansasii results from a reduced PZase activity. Like M. tuberculosis, M. kansasii accumulated POA in the cells at an acidic pH; however, due to its highly active POA efflux pump, the naturally PZA-resistant species M. smegmatis did not. These findings suggest the existence of a weak POA efflux mechanism in M. kansasii.  相似文献   

20.
车洋  杨天池  平国华  林律 《疾病监测》2019,34(6):501-505
目的研究外排泵基因Rv1456c、Rv1457c、Rv1458c的表达与结核分枝杆菌(MTB)不同耐药表型的关系。方法提取2017 — 2018年浙江省宁波市疾病预防控制中心耐药监测期间收集的102株MTB核糖核酸(RNA),应用实时荧光定量PCR方法检测ABC转运蛋白超家族外排泵基因Rv1456c、Rv1457c、Rv1458c的表达量,采用Mann-Whitney U检验分析外排泵基因表达在不同耐药表型菌株中的差异。结果Rv1457c和Rv1458c基因表达量在利福平耐药组中的中位数及四分位数间距[0.507(0.378 ~ 1.444),1.842(1.325 ~ 2.628)]高于利福平敏感组[0.418(0.357 ~ 0.618),1.545 (1.189 ~ 2.065)],差异有统计学意义(Z=2.030、2.108,均P<0.05)。 耐多药组Rv1457c和Rv1458c基因表达量的中位数及四分位数间距[0.538(0.419 ~ 1.490),1.941(1.471 ~ 2.659)],高于非耐多药组[0.415 (0.337 ~ 0.618),1.533 (1.122 ~ 2.056)],差异有统计学意义(Z=2.865、2.896,均P<0.05)。 异烟肼耐药组和敏感组中Rv1456c、Rv1457c的高表达率均存在差异(χ2=4.858、6.789,均P<0.05),利福平耐药组和敏感组中Rv1456c的高表达率差异有统计学意义(χ2=8.424,P<0.05),链霉素耐药组和敏感组中Rv1457c的高表达率差异有统计学意义(χ2=4.545,P<0.05),乙胺丁醇耐药组和敏感组中Rv1456c、Rv1457c的高表达率差异均有统计学意义(χ2=5.142、10.202,均P<0.05)。结论外排泵基因Rv1457c、Rv1458c的相对表达量增加与MTB对利福平耐药有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号