首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diffusion‐weighted imaging (DWI) provides information on tissue microstructure. Single‐shot echo planar imaging (EPI) is the most common technique for DWI applications in the brain, but is prone to geometric distortions and signal voids. Rapid acquisition with relaxation enhancement [RARE, also known as fast spin echo (FSE)] imaging presents a valuable alternative to DWI with high anatomical accuracy. This work proposes a multi‐shot diffusion‐weighted RARE‐EPI hybrid pulse sequence, combining the anatomical integrity of RARE with the imaging speed and radiofrequency (RF) power deposition advantage of EPI. The anatomical integrity of RARE‐EPI was demonstrated and quantified by center of gravity analysis for both morphological images and diffusion‐weighted acquisitions in phantom and in vivo experiments at 3.0 T and 7.0 T. The results indicate that half of the RARE echoes in the echo train can be replaced by EPI echoes whilst maintaining anatomical accuracy. The reduced RF power deposition of RARE‐EPI enabled multiband RF pulses facilitating simultaneous multi‐slice imaging. This study shows that diffusion‐weighted RARE‐EPI has the capability to acquire high fidelity, distortion‐free images of the eye and the orbit. It is shown that RARE‐EPI maintains the immunity to B0 inhomogeneities reported for RARE imaging. This benefit can be exploited for the assessment of ocular masses and pathological changes of the eye and the orbit.  相似文献   

2.
Our aim was to prospectively evaluate the feasibility of diffusional kurtosis imaging (DKI) in normal human kidney and to report preliminary DKI measurements. Institutional review board approval and informed consent were obtained. Forty‐two healthy volunteers underwent diffusion‐weighted imaging (DWI) scans with a 3‐T MR scanner. b values of 0, 500 and 1000 s/mm2 were adopted. Maps of fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (D), axial diffusivity (D||), mean kurtosis (MK), radial kurtosis (K) and axial kurtosis (K||) were produced. Three representative axial slices in the upper pole, mid‐zone and lower pole were selected in the left and right kidney. On each selected slice, three regions of interest were drawn on the renal cortex and another three on the medulla. Statistical comparison was performed with t‐test and analysis of variance. Thirty‐seven volunteers successfully completed the scans. No statistically significant differences were observed between the left and right kidney for all metrics (p values in the cortex: FA, 0.114; MD, 0.531; D, 0.576; D||, 0.691; MK, 0.934; K, 0.722; K||, 0.891; p values in the medulla: FA, 0.348; MD, 0.732; D, 0.470; D||, 0.289; MK, 0.959; K, 0.780; K||, 0.287). Kurtosis metrics (MK, K||, K) obtained in the renal medulla were significantly (p <0.001) higher than those in the cortex (0.552 ± 0.04, 0.637 ± 0.07 and 0.530 ± 0.08 in the medulla and 0.373 ± 0.04, 0.492 ± 0.06 and 0.295 ± 0.06 in the cortex, respectively). For the diffusivity measures, FA of the medulla (0.356 ± 0.03) was higher than that of the cortex (0.179 ± 0.03), whereas MD, D and D|| (mm2/ms) were lower in the medulla than in the cortex (3.88 ± 0.09, 3.50 ± 0.23 and 4.65 ± 0.29 in the cortex and 2.88 ± 0.11, 2.32 ± 0.20 and 3.47 ± 0.31 in the medulla, respectively). Our results indicate that DKI is feasible in the human kidney. We have reported the preliminary DKI measurements of normal human kidney that demonstrate well the non‐Gaussian behavior of water diffusion, especially in the renal medulla. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
The purpose of this study was to develop a self-navigation strategy to improve scan efficiency and image quality of water/fat-separated, diffusion-weighted multishot echo-planar imaging (ms-EPI). This is accomplished by acquiring chemical shift-encoded diffusion-weighted data and using an appropriate water-fat and diffusion-encoded signal model to enable reconstruction directly from k-space data. Multishot EPI provides reduced geometric distortion and improved signal-to-noise ratio in diffusion-weighted imaging compared with single-shot approaches. Multishot acquisitions require corrections for physiological motion-induced shot-to-shot phase errors using either extra navigators or self-navigation principles. In addition, proper fat suppression is important, especially in regions with large B0 inhomogeneity. This makes the use of chemical shift encoding attractive. However, when combined with ms-EPI, shot-to-shot phase navigation can be challenging because of the spatial displacement of fat signals along the phase-encoding direction. In this work, a new model-based, self-navigated water/fat separation reconstruction algorithm is proposed. Experiments in legs and in the head–neck region of 10 subjects were performed to validate the algorithm. The results are compared with an image-based, two-dimensional (2D) navigated water/fat separation approach for ms-EPI and with a conventional fat saturation approach. Compared with the 2D navigated method, the use of self-navigation reduced the shot duration time by 30%–35%. The proposed algorithm provided improved diffusion-weighted water images in both leg and head–neck regions compared with the 2D navigator-based approach. The proposed algorithm also produced better fat suppression compared with the conventional fat saturation technique in the B0 inhomogeneous regions. In conclusion, the proposed self-navigated reconstruction algorithm can produce superior water-only diffusion-weighted EPI images with less artefacts compared with the existing methods.  相似文献   

4.
Single-shot echo planar imaging (EPI) of a mouse brain at high field is very challenging. Large susceptibility-induced gradients affect much of the brain volume, causing severe image deformations and signal loss. Segmented EPI and other conventional multi-shot approaches alleviate these problems but suffer from lower temporal resolution and motion artifacts. We demonstrate that interleaved snapshot EPI represents a simple and robust alternative approach and one that is particularly suitable for high-field T2*-weighted functional imaging of a mouse brain. Similarly to segmented multi-shot techniques, it significantly reduces the susceptibility-related artifacts. At the same time, it preserves the high temporal resolution and the snapshot capability of a conventional EPI by acquiring entire image within a single TR period. We discuss implementation details of the interleaved snapshot EPI sequence and the trade-offs involved between the imaging efficiency, the number of interleaved excitation-acquisition blocks and the artifact reduction. To document the sequence utility, murine brain in vivo imaging with the interleaved snapshot EPI method was compared with a conventional EPI. We found that at least five interleaved blocks were necessary to restore the signal in most cortical areas. We also show that a standard global shimming procedure provides sufficient homogeneity for multi-slice interleaved snapshot EPI acquisition. In contrast, the conventional EPI of comparable image quality would be limited to a single slice with highly optimized local shim. Finally, an in vitro comparison with turbo FLASH acquisition shows the interleaved snapshot EPI to have superior time resolution and signal-to-noise ratio.  相似文献   

5.
目的 探讨b值的选取对DTI测量指标和图像质量的影响,从而获得最佳b值。方法随机招募20例健康志愿者行DTI成像,b值的选择为0、200、400、600、800、1000s/mm^2,弥散梯度方向为6,分别测量ADC值、FA值,SNR、CNR,对ADC图进行评分,分析不同b值时的变化规律。结果5组b值获得的肾实质、皮质、髓质的ADC值及SNR值比较具有统计学意义(F值为1846.65、368.93、207.80和951.93,P〈0.05),随着b值的增大,ADC值变小,SNR值变小。不同b值的肾实质、皮质、髓质的FA值及CNR值比较均不具有统计学意义(F值为0.98、1.07、1.14和1.13,P〉0.05)。相同b值时皮、髓质ADC值和FA值比较均具有统计学意义(P〈0.05)。ADC图得分随着b值的增大,图像质量变差。b值取0、800s/mm^2时,ADC图的图像质量具有诊断意义,但皮髓质分辨不清晰。b值与肾实质ADC值、SNR上呈负相关(r=-0.980和-0.974,P〈0.05),而与FA值、CNR无相关(r=-0.156和-0.152,P〉0.05)。结论b值为600s/mm^2的图像质量较好,皮髓质差异容易分辨,适合于肾脏的研究。  相似文献   

6.
Fractional anisotropy (FA) obtained by diffusion tensor imaging (DTI) can be used to image the kidneys without any contrast media. FA of the medulla has been shown to correlate with kidney function. It is expected that higher spatial resolution would improve the depiction of small structures within the kidney. However, the achievement of high spatial resolution in renal DTI remains challenging as a result of respiratory motion and susceptibility to diffusion imaging artefacts. In this study, a targeted field of view (TFOV) method was used to obtain high‐resolution FA maps and colour‐coded diffusion tensor orientations, together with measures of the medullary and cortical FA, in 12 healthy subjects. Subjects were scanned with two implementations (dual and single kidney) of a TFOV DTI method. DTI scans were performed during free breathing with a navigator‐triggered sequence. Results showed high consistency in the greyscale FA, colour‐coded FA and diffusion tensors across subjects and between dual‐ and single‐kidney scans, which have in‐plane voxel sizes of 2 × 2 mm2 and 1.2 × 1.2 mm2, respectively. The ability to acquire multiple contiguous slices allowed the medulla and cortical FA to be quantified over the entire kidney volume. The mean medulla and cortical FA values were 0.38 ± 0.017 and 0.21 ± 0.019, respectively, for the dual‐kidney scan, and 0.35 ± 0.032 and 0.20 ± 0.014, respectively, for the single‐kidney scan. The mean FA between the medulla and cortex was significantly different (p < 0.001) for both dual‐ and single‐kidney implementations. High‐spatial‐resolution DTI shows promise for improving the characterization and non‐invasive assessment of kidney function. © 2014 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd.  相似文献   

7.
Single-shot echo-planar imaging (EPI) is an important method for MRI of the brain. A method has been developed to double the resolution of EPI in the phase-encode direction, without requiring increases in the maximum gradient amplitude or slew rate. The new approach is based on an EPI implementation of the TRAIL (two reduced acquisitions interleaved) method, in which two images, acquired in rapid succession, are spatially interleaved. In addition, two lines of k-space are acquired for each reversal of the readout gradient. Two full-length readouts are needed, therefore power deposition is increased and the total acquisition time is doubled compared with conventional EPI. However, the individual readouts do not increase in length, so there is no increase in image blurring, and distortion is halved as a result of the closer temporal spacing of the acquired k-space lines. A correction method is also presented to remove additional potential Nyquist ghosting. The new method is demonstrated in vivo at 4.7 T and could in principle be combined with existing approaches for increasing resolution, such as partial Fourier or parallel imaging.  相似文献   

8.
The aim of this study was to evaluate the imaging quality and diagnostic performance of fast spin echo diffusion‐weighted imaging with periodically rotated overlapping parallel lines with enhanced reconstruction (FSE‐PROP‐DWI) in distinguishing parotid pleomorphic adenoma (PMA) from Warthin tumor (WT). This retrospective study enrolled 44 parotid gland tumors from 34 patients, including 15 PMAs and 29 WTs with waived written informed consent. All participants underwent 1.5 T diffusion‐weighted imaging including FSE‐PROP‐DWI and single‐shot echo‐planar diffusion‐weighted imaging (SS‐EP‐DWI). After imaging resizing and registration among T2WI, FSE‐PROP‐DWI and SS‐EP‐DWI, imaging distortion was quantitatively analyzed by using the Dice coefficient. Signal‐to‐noise ratio and contrast‐to‐noise ratio were qualitatively evaluated. The mean apparent diffusion coefficient (ADC) of parotid gland tumors was calculated. Wilcoxon signed‐rank test was used for paired comparison between FSE‐PROP‐DWI versus SS‐EP‐DWI. Mann–Whitney U test was used for independent group comparison between PMAs versus WTs. Diagnostic performance was evaluated by receiver operating characteristics curve analysis. P < 0.05 was considered statistically significant. The Dice coefficient was statistically significantly higher on FSE‐PROP‐DWI than SS‐EP‐DWI for both tumors (P < 0.005). Mean ADC was statistically significantly higher in PMAs than WTs on both FSE‐PROP‐DWI and SS‐EP‐DWI (P < 0.005). FSE‐PROP‐DWI and SS‐EP‐DWI successfully distinguished PMAs from WTs with an AUC of 0.880 and 0.945, respectively (P < 0.05). Sensitivity, specificity, positive predictive value, negative predictive value and accuracy in diagnosing PMAs were 100%, 69.0%, 62.5%, 100% and 79.5% for FSE‐PROP‐DWI, and 100%, 82.8%, 75%, 100% and 88.6% for SS‐EP‐DWI, respectively. FSE‐PROP‐DWI is useful to distinguish parotid PMAs from WTs with less distortion of tumors but lower AUC than SS‐EP‐DWI.  相似文献   

9.
The practical implementation of ultra-fast spin-echo, or RARE imaging with adiabatic RF pulses and surface coil transmission at 7 T is described. Despite the large RF inhomogeneities, the adiabatic character of the 180 degrees BIR-4 refocusing pulses ensures optimal sensitivity and minimal image artifacts. An internal 'phase-cycle' is used to remove spurious unwanted coherences. The short T(2) relaxation times in rat brain at 7 T demand a centric, rather than a linear coverage of k-space in order to avoid excessive signal loss. T(2) relaxation during k-space coverage also leads to image blurring, which can be counteracted by interleaved k-space sampling. The coverage of k-space in four acquisitions provides high-quality anatomical images comparable to conventional spin-echo images. A two-scan RARE implementation provides sufficient spatial and temporal resolution for most applications. Quantitative mapping of T(1) relaxation and cerebral blood flow changes during forepaw stimulation in the rat are demonstrated.  相似文献   

10.
To be able to examine dynamic and detailed brain functions, the spatial and temporal resolution of 7 T MRI needs to improve. In this study, it was investigated whether submillimeter multishot 3D EPI fMRI scans, acquired with high‐density receive arrays, can benefit from a 2D CAIPIRINHA sampling pattern, in terms of noise amplification (g‐factor), temporal SNR and fMRI sensitivity. High‐density receive arrays were combined with a shot‐selective 2D CAIPIRINHA implementation for multishot 3D EPI sequences at 7 T. In this implementation, in contrast to conventional inclusion of extra kz gradient blips, specific EPI shots are left out to create a CAIPIRINHA shift and reduction of scan time. First, the implementation of the CAIPIRINHA sequence was evaluated with a standard receive setup by acquiring submillimeter whole brain T2*‐weighted anatomy images. Second, the CAIPIRINHA sequence was combined with high‐density receive arrays to push the temporal resolution of submillimeter 3D EPI fMRI scans of the visual cortex. Results show that the shot‐selective 2D CAIPIRINHA sequence enables a reduction in scan time for 0.5 mm isotropic 3D EPI T2*‐weighted anatomy scans by a factor of 4 compared with earlier reports. The use of the 2D CAIPIRINHA implementation in combination with high‐density receive arrays, enhances the image quality of submillimeter 3D EPI scans of the visual cortex at high acceleration as compared to conventional SENSE. Both the g‐factor and temporal SNR improved, resulting in a method that is more sensitive to the fMRI signal. Using this method, it is possible to acquire submillimeter single volume 3D EPI scans of the visual cortex in a subsecond timeframe. Overall, high‐density receive arrays in combination with shot‐selective 2D CAIPIRINHA for 3D EPI scans prove to be valuable for reducing the scan time of submillimeter MRI acquisitions.  相似文献   

11.
Mouse spinal cord (SC) diffusion-weighted imaging (DWI) provides important information on tissue morphology and structural changes that may occur during pathologies such as multiple sclerosis or SC injury. The acquisition scheme of the commonly used DWI techniques is based on conventional spin-echo encoding, which is time-consuming. The purpose of this work was to investigate whether the use of echo planar imaging (EPI) would provide good-quality diffusion MR images of mouse SC, as well as accurate measurements of diffusion-derived metrics, and thus enable diffusion tensor imaging (DTI) and highly resolved DWI within reasonable scan times. A four-shot diffusion-weighted spin-echo EPI (SE-EPI) sequence was evaluated at 11.75 T on a group of healthy mice (n = 10). SE-EPI-derived apparent diffusion coefficients of gray and white matter were compared with those obtained using a conventional spin-echo sequence (c-SE) to validate the accuracy of the method. To take advantage of the reduction in acquisition time offered by the EPI sequence, multi-slice DTI acquisitions were performed covering the cervical segments (six slices, six diffusion-encoding directions, three b values) within 30 min (vs 2 h for c-SE). From these measurements, fractional anisotropy and mean diffusivities were calculated, and fiber tracking along the C1 to C6 cervical segments was performed. In addition, high-resolution images (74 x 94 microm(2)) were acquired within 5 min per direction. Clear delineation of gray and white matter and identical apparent diffusion coefficient values were obtained, with a threefold reduction in acquisition time compared with c-SE. While overcoming the difficulties associated with high spatially and temporally resolved DTI measurements, the present SE-EPI approach permitted identification of reliable quantitative parameters with a reproducibility compatible with the detection of pathologies. The SE-EPI method may be particularly valuable when multiple sets of images from the SC are needed, in cases of rapidly evolving conditions, to decrease the duration of anesthesia or to improve MR exploration by including additional MR measurements. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Diffusion tensor imaging (DTI) is becoming a relevant diagnostic tool to understand muscle disease and map muscle recovery processes following physical activity or after injury. Segmenting all the individual leg muscles, necessary for quantification, is still a time‐consuming manual process. The purpose of this study was to evaluate the impact of a supervised semi‐automatic segmentation pipeline on the quantification of DTI indices in individual upper leg muscles. Longitudinally acquired MRI datasets (baseline, post‐marathon and follow‐up) of the upper legs of 11 subjects were used in this study. MR datasets consisted of a DTI and Dixon acquisition. Semi‐automatic segmentations for the upper leg muscles were performed using a transversal propagation approach developed by Ogier et al on the out‐of‐phase Dixon images at baseline. These segmentations were longitudinally propagated for the post‐marathon and follow‐up time points. Manual segmentations were performed on the water image of the Dixon for each of the time points. Dice similarity coefficients (DSCs) were calculated to compare the manual and semi‐automatic segmentations. Bland‐Altman and regression analyses were performed, to evaluate the impact of the two segmentation methods on mean diffusivity (MD), fractional anisotropy (FA) and the third eigenvalue (λ3). The average DSC for all analyzed muscles over all time points was 0.92 ± 0.01, ranging between 0.48 and 0.99. Bland‐Altman analysis showed that the 95% limits of agreement for MD, FA and λ3 ranged between 0.5% and 3.0% for the transversal propagation and between 0.7% and 3.0% for the longitudinal propagations. Similarly, regression analysis showed good correlation for MD, FA and λ3 (r = 0.99, p < 60; 0.0001). In conclusion, the supervised semi‐automatic segmentation framework successfully quantified DTI indices in the upper‐leg muscles compared with manual segmentation while only requiring manual input of 30% of the slices, resulting in a threefold reduction in segmentation time.  相似文献   

13.
The purpose of this study is 1) to demonstrate reproducibility of spin echo‐echo planar imaging (SE‐EPI) magnetic resonance elastography (MRE) to estimate kidney stiffness; and 2) to compare SE‐EPI MRE and gradient recalled echo (GRE) MRE‐derived stiffness estimations in various anatomical regions of the kidney. Kidney MRE was performed on 33 healthy subjects (8 for SE‐EPI MRE reproducibility and 25 for comparison with GRE MRE; age range: 22–66 years) in a 3 T MRI scanner. To demonstrate SE‐EPI MRE reproducibility, subjects were scanned for the first scan and then asked to leave the scan room and repositioned again for the second (repeat) scan. Similar set‐up was used for GRE MRE as well. The displacement data was then processed to obtain overall stiffness estimates of the kidney. Concordance correlation analyses were performed to determine SE‐EPI MRE reproducibility and agreement between GRE MRE and SE‐EPI MRE derived stiffness. A high concordance correlation (ρc = 0.95; p‐value<0.0001) was obtained for SE‐EPI MRE reproducibility. Good concordance correlation was observed (ρc = 0.84; p < 0.0001 for both kidneys, ρc = 0.91; p < 0.0001 for right kidney and ρc = 0.78; p < 0.0001 for left kidney) between GRE MRE and SE‐EPI MRE derived stiffness measurements. Paired t‐test results showed that stiffness value of medulla was significantly (p < 0.0001) greater than cortex using SE‐EPI MRE as well as GRE MRE. SE‐EPI MRE was reproducible and good agreement was observed in MRE‐derived stiffness measurements obtained using SE‐EPI and GRE sequences. Therefore, SE‐EPI can be used for kidney MRE applications.  相似文献   

14.
Chronic kidney disease (CKD) occurs in over one‐third of patients with sickle cell disease (SCD) and can progress to end‐stage renal disease. Unfortunately, current clinical assessments of kidney function are insensitive to early‐stage CKD. Previous studies have shown that diffusion magnetic resonance imaging (MRI) can sensitively detect regional renal microstructural changes associated with early‐stage CKD. However, previous MRI studies in patients with SCD have been largely limited to the detection of renal iron deposition assessed by T2* relaxometry. In this pilot imaging study, we compare MRI assessments of renal microstructure (diffusion) and iron deposition (T2*) in patients with SCD and in non‐SCD control subjects. Diffusion tensor imaging (DTI) and T2* relaxometry MRI data were obtained for pediatric (n = 5) and adult (n = 4) patients with SCD, as well as for non‐SCD control subjects (n = 10), on a Siemens Espree 1.5‐T MRI scanner. A region‐of‐interest analysis was used to calculate mean medullary and cortical values for each MRI metric. MRI findings were also compared with clinical assessments of renal function and hemolysis. Patients with SCD showed a significant decrease in medullary fractional anisotropy (FA, p = 0.0001) in comparison with non‐SCD subjects, indicative of microstructural alterations in the renal medulla of patients with SCD. Cortical and medullary reductions in T2* (increased iron deposition, p = ≤0.0001) were also observed. Significant correlations were also observed between kidney T2* assessments and multiple measures of hemolysis. This is the first DTI MRI study of patients with SCD to demonstrate reductions in medullary FA despite no overt CKD [estimated glomerular filtration rate (eGFR) > 100 mL/min/1.73 m2]. These medullary FA changes are consistent with previous studies in patients with CKD, and suggest that DTI MRI can provide a useful measure of kidney injury to complement MRI assessments of iron deposition.  相似文献   

15.
The aim of this paper is to obtain discriminant features from two scalar measures of Diffusion Tensor Imaging (DTI) data, Fractional Anisotropy (FA) and Mean Diffusivity (MD), and to train and test classifiers able to discriminate Alzheimer's Disease (AD) patients from controls on the basis of features extracted from the FA or MD volumes. In this study, support vector machine (SVM) classifier was trained and tested on FA and MD data. Feature selection is done computing the Pearson's correlation between FA or MD values at voxel site across subjects and the indicative variable specifying the subject class. Voxel sites with high absolute correlation are selected for feature extraction. Results are obtained over an on-going study in Hospital de Santiago Apostol collecting anatomical T1-weighted MRI volumes and DTI data from healthy control subjects and AD patients. FA features and a linear SVM classifier achieve perfect accuracy, sensitivity and specificity in several cross-validation studies, supporting the usefulness of DTI-derived features as an image-marker for AD and to the feasibility of building Computer Aided Diagnosis systems for AD based on them.  相似文献   

16.
We performed a comparison study focusing on differences in fractional anisotropy (FA) and mean diffusivity (MD) between 3-T and 1.5-T diffusion tensor imaging (DTI) with parallel imaging. Thirty healthy volunteers underwent DTI with an eight-channel phased-array coil at both 3 T and 1.5 T. Histogram and region of interest (ROI) analyses were performed. Paired t tests were applied for statistical analysis. Signal-to-noise ratios of these regions were also measured. For histogram analysis, peak location of FA was significantly lower at 3 T than at 1.5 T (P = 0.04). Mean FA was significantly higher at 3 T than at 1.5 T (P = 0.002). Peak location of MD was significantly lower at 3 T than at 1.5 T (P < 0.001). Mean MD was significantly lower at 3 T than at 1.5 T (P < 0.001). In ROI analysis, FA was significantly larger at 3 T than at 1.5 T in the centrum semiovale (P < 0.001), middle cerebellar peduncle (P < 0.001), cerebral peduncle (P = 0.006), posterior limb of the internal capsule (P = 0.007), genu (P < 0.001) and splenium (P < 0.001). FA was significantly lower at 3 T than at 1.5 T in the globus pallidus (P < 0.001). MD was significantly smaller at 3 T than at 1.5 T in the globus pallidus (P = 0.007), thalamus (P < 0.001), centrum semiovale (P < 0.001), middle cerebellar peduncle (P < 0.001), cerebral peduncle (P = 0.01), posterior limb of the internal capsule (P < 0.001), genu (P = 0.01) and splenium (P < 0.001). Significant differences in FA and MD exist between 3 T and 1.5 T for whole-brain histogram analysis and ROI analysis.  相似文献   

17.
The diffusion‐weighted (DW) MR signal sampled over a wide range of b‐values potentially allows for tissue differentiation in terms of cellularity, microstructure, perfusion, and T2 relaxivity. This study aimed to implement a machine learning algorithm for automatic brain tissue segmentation from DW‐MRI datasets, and to determine the optimal sub‐set of features for accurate segmentation. DWI was performed at 3 T in eight healthy volunteers using 15 b‐values and 20 diffusion‐encoding directions. The pixel‐wise signal attenuation, as well as the trace and fractional anisotropy (FA) of the diffusion tensor, were used as features to train a support vector machine classifier for gray matter, white matter, and cerebrospinal fluid classes. The datasets of two volunteers were used for validation. For each subject, tissue classification was also performed on 3D T1‐weighted data sets with a probabilistic framework. Confusion matrices were generated for quantitative assessment of image classification accuracy in comparison with the reference method. DWI‐based tissue segmentation resulted in an accuracy of 82.1% on the validation dataset and of 82.2% on the training dataset, excluding relevant model over‐fitting. A mean Dice coefficient (DSC) of 0.79 ± 0.08 was found. About 50% of the classification performance was attributable to five features (i.e. signal measured at b‐values of 5/10/500/1200 s/mm2 and the FA). This reduced set of features led to almost identical performances for the validation (82.2%) and the training (81.4%) datasets (DSC = 0.79 ± 0.08). Machine learning techniques applied to DWI data allow for accurate brain tissue segmentation based on both morphological and functional information.  相似文献   

18.
OBJECTIVE: There are conflicting reports of adverse HIV-associated alterations in white matter integrity as measured by diffusion tensor imaging (DTI). We sought to address these conflicting reports by assessing, on a voxel-by-voxel basis, HIV-associated regional changes in radiologically defined normal-appearing white matter (NAWM) integrity using high-resolution DTI. METHODS: 30 HIV-seropositive (SP) and 30 HIV-seronegative (SN) nondemented, community-dwelling participants underwent DTI to derive whole-brain measures of white matter integrity (fractional anisotropy [FA] and mean diffusivity [MD]). For each participant, the white matter T2 volume was thresholded to remove regions of abnormal signal, resulting in a NAWM mask, which was then applied to the FA and MD volumes to extract voxel-wise NAWM measures of white matter integrity. Voxel-wise group comparisons of FA and MD were conducted (P < 0.005, extent threshold 5 voxels) while controlling for age and substance-abuse history. RESULTS: There were no significant differences between the groups for demographic or cognitive performance variables. Summary whole-brain measures of FA and MD were equivalent between the SP and SN samples. Among the SP sample, history of substance abuse was associated with significantly increased whole-brain NAWM MD, and coinfection with hepatitis C virus (HCV) was associated with a trend for increased MD. Correlations between whole-brain NAWM FA and MD with cognitive performance measures were not significant. Regional analyses of DTI measures revealed variable differences in NAWM FA in the SP sample, with findings of both decreased and increased FA. Differences in NAWM MD were more consistent, with widespread increases noted in the SP sample compared to the SN sample. Eight of the 10 regions displaying significantly increased FA in the SP sample were also found to have significantly increased MD compared to the SN sample. CONCLUSIONS: Decreased white matter integrity is present even in radiologically defined NAWM in nondemented, community-dwelling patients with HIV. The decrease in NAWM integrity is best seen in increases in MD, a measure of generalized tissue breakdown. Indications of NAWM axonal integrity (FA) present a more complicated picture, with both decreased FA and increased FA in the SP sample. Our findings of variable HIV-associated FA changes in NAWM may account for previous conflicting reports of changes in DTI parameters in this population. The results of our study suggest that HIV infection contributes to variable changes in DTI values, reflecting both direct loss of axonal integrity and a loss of complexity to the underlying axonal matrix.  相似文献   

19.
The major roles of filtration, metabolism and high blood flow make the kidney highly vulnerable to drug‐induced toxicity and other renal injuries. A method to follow kidney function is essential for the early screening of toxicity and malformations. In this study, we acquired high spatiotemporal resolution (four dimensional) datasets of normal mice to follow changes in kidney structure and function during development. The data were acquired with dynamic contrast‐enhanced MRI (via keyhole imaging) and a cryogenic surface coil, allowing us to obtain a full three‐dimensional image (isotropic resolution, 125 microns) every 7.7 s over a 50‐min scan. This time course permitted the demonstration of both contrast enhancement and clearance. Functional changes were measured over a 17‐week course (at 3, 5, 7, 9, 13 and 17 weeks). The time dimension of the MRI dataset was processed to produce unique image contrasts to segment the four regions of the kidney: cortex (CO), outer stripe (OS) of the outer medulla (OM), inner stripe (IS) of the OM and inner medulla (IM). Local volumes, time‐to‐peak (TTP) values and decay constants (DC) were measured in each renal region. These metrics increased significantly with age, with the exception of DC values in the IS and OS. These data will serve as a foundation for studies of normal renal physiology and future studies of renal diseases that require early detection and intervention. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Diffusion imaging is a promising technique as it can provide microstructural tissue information and thus potentially show viable changes in spinal cord. However, the traditional single‐shot imaging method is limited as a result of various image artifacts. In order to improve measurement accuracy, we used a newly developed, multi‐shot, high‐resolution, diffusion tensor imaging (DTI) method to investigate diffusion metric changes and compare them with T2‐weighted (T2W) images before and after decompressive surgery for cervical spondylotic myelopathy (CSM). T2W imaging, single‐shot DTI and multi‐shot DTI were employed to scan seven patients with CSM before and 3 months after decompressive surgery. High signal intensities were scored using the T2 W images. DTI metrics, including fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD), were quantified and compared pre‐ and post‐surgery. In addition, the relationship between imaging metrics and neurological assessments was examined. The reproducibility of multi‐shot DTI was also assessed in 10 healthy volunteers. Post‐surgery, the mean grade of cervical canal stenosis was reduced from grade 3 to normal after 3 months. Compared with single‐shot DTI, multi‐shot DTI provided better images with lower artifact levels, especially following surgery, as a result of reduced artifacts from metal implants. The new method also showed acceptable reproducibility. Both FA and RD values from the new acquisition showed significant differences post‐surgery (FA, p = 0.026; RD, p = 0.048). These changes were consistent with neurological assessments. In contrast, T2W images did not show significant changes before and after surgery. Multi‐shot diffusion imaging showed improved image quality over single‐shot DWI, and presented superior performance in diagnosis and recovery monitoring for patients with CSM compared with T2W imaging. DTI metrics can reflect the pathological conditions of spondylotic spinal cord quantitatively and may serve as a sensitive biomarker for potential CSM management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号