首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 461 毫秒
1.
在传统股动脉搭桥术中,由于下游缝合区采用“端对侧”的“单路搭桥”缝合方式,移植管中血流会对缝合区底面产生很大冲击,引起局部血流动力学急剧变化,并可能因此而导致血管再狭窄和手术失败。由于缝合区几何结构的不对称必然导致流场的不均匀,本研究提出了“对称双路搭桥”的构想以图改善血流动力学。本研究对“单路”和“对称双路”两种连接模型中的血液流动进行了数值模拟。两种模型利用相同的几何参数进行建模,并采用了相同的边界条件。数值模拟结果包括流场、壁面切应力及其梯度等血流动力学参数。研究表明,“对称双路”模型比“单路”模型具有较大的纵向速度、较小的二次流、较均匀的壁面切应力等。因此,“对称双路”搭桥模型具有更好的血流动力学,可以减少股动脉搭桥术后内膜增生和再狭窄的可能性。  相似文献   

2.
The numerical simulation of the conventional 1-way bypass graft and the presented 2-way bypass graft used in the stenosed femoral arteries were completed. Purpose of the present study was to ascertain whether the modified geometry configuration of 2-way bypass graft could improve the flow conditions of femoral bypass graft. The physiological flows in 1-way and 2-way models were simulated with finite element method under the same calculation conditions. Comparisons were made between the hemodynamics of 1-way and 2-way models. The results suggested that 2-way bypass graft could result in more favorable and regular flow conditions than 1-way bypass graft, and could decrease the probability of intimal hyperplasia, restenosis and surgery failure in femoral bypass graft.  相似文献   

3.
Intimal thickening in the coronary artery bypass graft (CABG) distal anastomosis has been implicated as the major cause of restenosis and long-term graft failure. Several studies point to the interplay between nonuniform hemodynamics including disturbed flows and recirculation zones, wall shear stress, and long particle residence time as possible etiologies. The hemodynamic features of two anatomic models of saphenous-vein CABGs were studied and compared. One simulated an anastomosis with both diameter and compliance mismatch and a curvature at the connection, analogous to the geometry observed in a conventional cardiothoracic procedure. The other, simulated an anastomosis with a flow stabilizing anastomotic implant connector which improves current cardiothoracic procedures by eliminating the distal vein bulging and curvature. Physiologic flow conditions were imposed on both models and qualitative analysis of the flow was performed with dye injection and a digital camera. Quantitative analysis was performed with laser Doppler velocimetry. Results showed that the presence of the bulge at the veno-arterial junction, contributed to the formation of accentuated secondary structures (helices), which progress into the flow divider and significantly affect radial velocity components at the host vessel up to four diameters downstream of the junction. The model with the implant, achieved more hemodynamically efficient conditions on the host vessel with higher mean and maximum axial velocities and lower radial velocities than the conventional model. The presence of the sinus may also affect the magnitude and shape of the shear stress at locations where intimal thickening occurs. Thus, the presence of the implant creates a more streamlined environment with more primary and less secondary flow components which may then inhibit the development of intimal thickening, restenosis, and ultimate failure of the saphenous vein graft. © 2002 Biomedical Engineering Society. PAC2002: 8780Rb, 8719Rr, 8719Uv, 8763Lk, 8719Xx, 4262Be, 4780+v, 8710+e  相似文献   

4.
单路和双路CABG中血流动力学的比较   总被引:1,自引:0,他引:1  
为了改善冠状动脉搭桥术后的血流动力学,提出了对称双路搭桥的改进措施。利用有限元分析方法,对冠状动脉搭桥术中单路移植管和对称双路移植管内的生理流动进行了数值模拟,并对两种情况下的血流动力学计算结果进行了比较。计算结果分析了缝合区附近的流场、壁面剪应力等血流动力学因素在心动周期内的时空分布情况。研究结果表明,对称双路搭桥比单路搭桥具有更合理的血流动力学,可以避免动脉粥样硬化的危险性血流动力学因素,从而减少手术再狭窄的发生。  相似文献   

5.
Coronary artery bypass graft (CABG) failure has been linked to graft hemodynamics, in particular wall shear stress. This study characterizes the morphology, geometry and wall shear stress patterns in human CABGs. The intimal thickness (IT) in 49 human saphenous vein CABGs was measured by digital light microscopy. The geometry of six saphenous vein CABGs was replicated by post-mortem infusion of Batsons #17 anatomical corrosion casting compound. Graft hemodynamics were evaluated in two flow models, fabricated from the casts, under steady (Re = 110) and pulsatile flow (Re = 110, = 2) conditions. Saphenous vein CABGs in situ for more than 2 months had, on average, the greatest IT on the hood and suture sites of the distal anastomosis. Floor thickening was highly variable and significantly less than IT at the hood, suture site and graft body. All casts showed an indentation along the floor and 5/6 casts displayed a sharp local curvature on the hood. In both flow models, a large increase in wall shear rate occurred on the hood, just proximal to the toe. The local geometry of the hood created this large spatial gradient in wall shear stress which is a likely factor in hood intimal hyperplasia.  相似文献   

6.
在一般"端对侧"股动脉搭桥术中,由于缝合区几何结构的突变必然导致流场的不均匀.移植管中血流会对缝合区底面产生很大冲击,并影响手术效果.为改善此种现象,作者提出了"端对端"连接方式,并对"端对侧"和"端对端"两种连接模型中的血液流动进行了数值模拟.为便于比较,两种模型利用相同的几何参数进行建模,采用相同的边界条件,数值模拟利用计算流体动力学中的有限单元法进行计算.结果展示了流场、壁面剪切应力及其梯度等血流动力学的时空分布情况.经比较表明,"端对端"模型比"端对侧"模型具有较大的纵向速度、较小的二次流、较均匀的壁面剪切应力等.因此,"端对端"模型具有更好的血流动力学,可以改善搭桥效果.  相似文献   

7.
目的为改善冠状动脉旁路移植管的局部血流动力学,降低血管再狭窄的发生机率,研究一种可以避免血管再狭窄的双移植管搭桥方式。方法利用有限元分析方法,对传统模型和双移植管搭桥模型进行血流动力学模拟仿真,计算缝合区附近的流场、壁面切应力等血流动力学因素的分布情况。结果该双移植管搭桥具有较好的血流动力学分布,明显改善了主搭桥血管与冠状动脉缝合处的血流动力学参数,消除了该部位的涡流和流动停滞点,提高了底面的壁面切应力数值。在辅助搭桥血管与冠状动脉缝合处涡流区长度仅3 mm,与原主搭桥血管缝合处的涡流长度4.5 mm相比明显减小。辅助搭桥管分流了约36%的血液,只有约64%的血液流过了主搭桥管。结论该双移植管搭桥有助于减小内膜增生的发生机率。  相似文献   

8.
Hemodynamic parameters and early intimal thickening in branching blood vessels   总被引:19,自引:0,他引:19  
Intimal thickening due to atherosclerotic lesions or intimal hyperplasia in medium to large blood vessels is a major contributor to heart disease, the leading cause of death in the Western World. Balloon angioplasty with stenting, bypass surgery, and endarterectomy (with or without patch reconstruction) are some of the techniques currently applied to occluded blood vessels. On the basis of the preponderance of clinical evidence that disturbed flow patterns play a key role in the onset and progression of atherosclerosis and intimal hyperplasia, it is of interest to analyze suitable hemodynamic wall parameters that indicate susceptible sites of intimal thickening and/or favorable conditions for thrombi formation. These parameters, based on the wall shear stress, wall pressure, or particle deposition, are applied to interpret experimental/clinical observations of intimal thickening. Utilizing the parameters as "indicator" functions, internal branching blood vessel geometries are analyzed and possibly altered for different purposes: early detection of possibly highly stenosed vessel segments, prediction of future disease progression, and vessel redesign to potentially improve long-term patency rates. At the present time, the focus is on the identification of susceptible sites in branching blood vessels and their subsequent redesign, employing hemodynamic wall parameters. Specifically, the time-averaged wall shear stress (WSS), its spatial gradient (WSSG), the oscillatory shear index (OSI), and the wall shear stress angle gradient (WSSAG) are compared with experimental data for an aortoceliac junction. Then, the OSI, wall particle density (WPD), and WSSAG are segmentally averaged for different carotid artery bifurcations and compared with clinical data of intimal thickening. The third branching blood vessel under consideration is the graft-to-vein anastomosis of a vascular access graft. Suggested redesigns reduce several hemodynamic parameters (i.e., the WSSG, WSSAG, and normal pressure gradient [NPG]), thereby reducing the likelihood of restenosis, especially near the critical toe region.  相似文献   

9.
The graft diameter plays a critically important role in the long-term patency rates of bypass surgery. To clarify the influence of graft diameter on the blood flows in the femoral 2-way bypass surgery, the physiologically pulsatile flows in two femoral bypass models were simulated with numerical methods. For the sake of comparison, the models were constructed with identical geometry parameters except the different diameters of grafts. Two models with small and large grafts were studied. The boundary conditions for the simulation of blood flow were constant for both models. The maximum Reynolds number was 832.8, and the Womersley number was 6.14. The emphases of results were on the analysis of flow fields in the vicinity of the distal anastomosis. The temporal-spatial distributions of velocity vectors, pressure drop between the proximal and distal toe, wall shear stresses, wall shear stress gradients and oscillating shear index were compared. The present study indicated that femoral artery bypassed with a large graft demonstrated disturbed axial flow and secondary flow at the distal anastomosis while the axial flow at its downstream of toe was featured with larger and more uniform longitudinal velocities. Meanwhile, the large model exhibits less refluences, relatively uniform wall shear stresses, lower pressure and smaller wall shear stress gradients, whereas it does not have any advantages in the distributions of secondary flow and the oscillating shear index. In general, the large model exhibits better and more uniform hemodynamic phenomena near the vessel wall and may be effective in preventing the initiation and development of postoperative intimal hyperplasia and restenosis.  相似文献   

10.
The restenosis after coronary artery bypass graft(CABG) is attributed to the formation of intimal hyperplasia(IH) at the anastomosis,which is closely related to hemodynamic depend on the geometric model. In order to give a reasonable assessment of the surgery effect and judge the long-term patency rate,the hemodynamic of CABG surgery program is compared with that of surgery design of the junction angle changed.Based on in-vivo CT coronary angiography datasets,the individual geometric model of CABG reconstructed instead of idealized geometric models are applied to simulate the real physiological blood flow utilizing pulsatile flow boundary waveforms in the present study. The simulation results show that the maximum wall shear rate(WSS) value is at the bottom of anastomosis. Moreover,the stagnation zone growing gradually with the greater angle downstream the anastomosis is prone to form the IH,which is consistent with clinical observation. It is proved that the surgery being better suited to maintain graft patency is successful.  相似文献   

11.
One of the main causes of long-term failure of ePTFE grafts is the development of anastomotic intimal hyperplasia which leads to graft thrombosis. Experimental studies with bypass grafts have shown an inverse relationship between mean wall shear stress and intimal hyperplasia. The geometry of the anastomosis has a strong influence on the flow pattern and wall shear stress distribution. The aim of this in vitro study was to investigate the influence of non-planarity in a model of a distal anastomosis with interposition vein cuff, an anastomosis configuration that is increasingly being used because of improved clinical results. Laser Doppler anemometer measurements were carried out in silicone rubber models of interposition vein cuff anastomoses with planar and non-planar inflow. The pulsatile flow waveforms were typical of those found in femoro-infrapopliteal bypass. Axial and radial velocities were measured in the proximal and distal outflow segments. As expected a symmetrical helical flow pattern (Dean flow) was evident in the planar model. The model with non-planar inflow, however, gave rise to swirling flow in both the distal and proximal artery outflow segments for during the systolic phase. In patients, the anastomosis is usually non-planar. Since the configuration depends in part upon the tunnelling of the graft, this may be altered to some extent. Non-planar anastomotic configurations induce a swirling flow pattern, which may normalise wall shear stress, thereby potentially reducing intimal hyperplasia.  相似文献   

12.
In this paper, we report on the unsteady state modeling of blood flow in an end-to-side anastomosed bypass graft, which has a stenosis upstream from the junction. In coronary artery bypass grafting/surgery (CABG), new arteries are created in order to provide blood to the heart using other blood vessels as conduits to bypass the blocked section in the patient's coronary arteries. The failure of coronary artery bypass procedures has been attributed to both intimal hyperplasia (IH) and atherosclerosis. It is believed that these two phenomena are, in turn, related to the local hemodynamic factors. In this work, a three-dimensional computational fluid dynamics analysis is used to simulate the physiological blood flow through a model of a stenosed coronary bypass graft with the realistic assumption of non-Newtonian flow for human blood. For different flow repartitions and at different times of the cycle, both the recirculating areas and wall shear stress (WSS) are studied. Based on the different distribution of flow rates in the bypass graft and the host artery, the flow features are investigated and the influence of non-Newtonian behavior is discussed in terms of separation points, reattachment points, and the wall shear stresses. Various differences are observed based on the assumption of non-Newtonian behavior of blood, which have not been reported before when a simplified Newtonian approach is utilized.  相似文献   

13.
Hemodynamics is widely believed to influence coronary artery bypass graft (CABG) stenosis. Although distal anastomosis has been extensively investigated, further studies on proximal anastomosis are still necessary, as the extent and initiation of the stenosis process may be influenced by the flow of the proximal anastomosis per se. Therefore, in this study, two models (i.e. 90 degrees and 135 degrees anastomotic models) were designed and constructed to simulate a proximal anastomosis of CABG for the left and right coronary arteries, respectively. Flow characteristics for these models were studied experimentally in order to validate the simulation results found earlier. PIV measurements were carried out on two Pyrex glass models, so that the disturbed flow (stagnation point, flow separation and vortex) found in both proximal anastomosis models using numerical simulation, could be verified. Consequently, a fair agreement between numerical and experimental data was observed in terms of flow characteristics, velocity profiles and wall shear stress (WSS) distributions under both steady and pulsatile flow conditions. The discrepancy was postulated to be due to the difference in detailed geometry of the physical and computational models, due to manufacturing limitations. It was not possible to reproduce the exact shape of the computational model when making the Pyrex glass model. The analysis of the hemodynamic parameters based on the numerical simulation study also suggested that the 135 degrees proximal anastomosis model would alleviate the potential of intimal thickening and/or atherosclerosis, more than that of a 90 degrees proximal anastomosis model, as it had a lower variation range of time-averaged WSS and the lower segmental average of WSSG.  相似文献   

14.
Flow Streamlining Devices is a new tool in Coronary Artery Bypass Grafting (CABG). They aim in: a) Performing a sutureless anastomosis to reduce thrombosis at the veno-arterial junction, and b) Providing a hemodynamically efficient scaffolding to reduce secondary flow disturbances. Thrombosis and flow disturbances are factors that have been reported as contributing factors to the development of intimal hyperplasia (IH) and failure of the graft. By reducing thrombosis and flow disturbances, it is expected that IH will be inhibited and the lifetime of the graft extended. To evaluate the hemodynamic benefits of such an implant, two models were designed and fabricated. One simulated the geometry of the conventional anastomosis without an implant, and the other simulated an anastomosis with a flow streamlining implant. Identical flow conditions relevant to a coronary anastomosis were imposed on both models and flow visualization was performed with dye injection and a digital camera. Results showed reduction of disturbances in the presence of the implant. This reduction seems to be favorable to hemodynamic streamlining which may create conditions that may inhibit the initialization of IH. However, the compliance and geometric mismatch between the anastomosis and the implant created a disturbance at the rigid compliant wall interface, which should be eliminated prior to clinical applications.  相似文献   

15.
Influence of graft-host diameter ratio on the hemodynamics of CABG   总被引:1,自引:0,他引:1  
The graft-host diameter ratios have impacts on the flow patterns of bypass graft. In order to clarify the influence of graft-host diameter ratios on the flow patterns and the wall shear stress in coronary artery bypass graft (CABG), the pulsatile blood flows in three CABG models, with the graft diameter larger than, equal to and smaller than that of the coronary artery, were simulated with finite element method. The temporal-spatial distributions of flow patterns, wall shear stresses (WSS), wall shear stress gradients (WSSG), oscillating shear index and shear stress ratio were depicted and compared. Of the three models evaluated, large model can bring about better hemodynamics to some extent with relatively large positive longitudinal velocity, uniform and large WSS, and small WSSG. The results suggest that larger or isodiametric graft is favorable. However, no distinct difference of WSS based temporal parameters was found between all the three models. Alternative anastomotic designs are necessary for the improvement of CABG patency rates.  相似文献   

16.
Wall shear stress, as one of the most important hemodynamic parameters of the cardiovascular system, has been studied extensively in the numerical and experimental approaches to blood flow in various arteries. In order to clarify the influence of graft diameter on the wall shear stress in a femoral two-way bypass graft, the pulsatile blood flows in two models were simulated with the finite element method. Both models were constructed with different diameters of grafts. The main geometric structure and the boundary conditions were identical for both models. The emphasis was on the comparison analysis of wall shear stresses in the vicinity of the distal anastomosis. The temporal-spatial distributions of wall shear stresses, wall shear stress gradients, and oscillating shear index were analyzed and compared. The present study indicated that femoral artery bypassed with a large graft demonstrated relatively uniform wall shear stresses and small wall shear stress gradients, whereas it does not have advantages in the oscillating shear index. The large model exhibits better and more regular hemodynamic phenomena and may be effective in decreasing the probability of the initiation and development of postoperative intimal hyperplasia and restenosis. Thus, appropriately large grafts are applicable in the clinical practice of femoral two-way bypass operation. More detailed studies are necessary on this problem for the purpose of increasing the success rates of the femoral bypass grafts.  相似文献   

17.
为了说明移植管-宿主动脉直径比对冠状动脉搭桥术的流场及壁面切应力的影响,构造了三个具有不同移植管-宿主动脉直径比的冠状动脉搭桥术模型,三个模型的移植管直径分别小于、等于和大于宿主动脉的直径;利用有限单元数值模拟方法对三个模型中的生理性脉动血流进行了仿真分析;对流场、壁面切应力及其相关系数的时空分布进行了显示和比较。结果表明,大直径比的模型具有相对较大的纵向速度、大而均匀的壁面切应力以及小的壁面切应力梯度,从而在一定程度上改善了血流动力学;在搭桥术应用中采用大于或等于1的直径比是可取的。然而,在三个模型中,与壁面切应力相关的时间参数并没有显著差别。为了提高冠状动脉搭桥术的畅通率,设计新的缝合结构是很有必要的。  相似文献   

18.
Autologous saphenous vein is used as a conduit to bypass atherosclerotic lesions in both the coronary artery (coronary artery bypass graft surgery [CABG]) and in femoral arteries (infrainguinal bypass graft surgery [IIBS]). Despite the undoubted success and benefits of the procedures, graft failure occurs in 50% of cases within 10 years after surgery. A principal cause of late vein graft failure is intimal and medial hyperplasia and superimposed atherogenesis. Apart from lipid lowering therapy, no intervention has hitherto proved clinically effective in preventing late vein graft failure which clearly constitutes a major clinical and economic problem that needs to be urgently resolved. However, we have studied the effect of external synthetic stents and sheaths in pig models of vein into artery interposition grafting and found them to have a profound effect on vein graft remodelling and thickening. In this review, therefore, we will summarise the mechanisms underlying vein graft failure and how these stents influence these processes and the possible mechanisms involved as well as the application of these devices in preventing vein graft failure clinically.  相似文献   

19.
We present a computational framework for multiscale modeling and simulation of blood flow in coronary artery bypass graft (CABG) patients. Using this framework, only CT and non-invasive clinical measurements are required without the need to assume pressure and/or flow waveforms in the coronaries and we can capture global circulatory dynamics. We demonstrate this methodology in a case study of a patient with multiple CABGs. A patient-specific model of the blood vessels is constructed from CT image data to include the aorta, aortic branch vessels (brachiocephalic artery and carotids), the coronary arteries and multiple bypass grafts. The rest of the circulatory system is modeled using a lumped parameter network (LPN) 0 dimensional (0D) system comprised of resistances, capacitors (compliance), inductors (inertance), elastance and diodes (valves) that are tuned to match patient-specific clinical data. A finite element solver is used to compute blood flow and pressure in the 3D (3 dimensional) model, and this solver is implicitly coupled to the 0D LPN code at all inlets and outlets. By systematically parameterizing the graft geometry, we evaluate the influence of graft shape on the local hemodynamics, and global circulatory dynamics. Virtual manipulation of graft geometry is automated using Bezier splines and control points along the pathlines. Using this framework, we quantify wall shear stress, wall shear stress gradients and oscillatory shear index for different surgical geometries. We also compare pressures, flow rates and ventricular pressure-volume loops pre- and post-bypass graft surgery. We observe that PV loops do not change significantly after CABG but that both coronary perfusion and local hemodynamic parameters near the anastomosis region change substantially. Implications for future patient-specific optimization of CABG are discussed.  相似文献   

20.
为了说明机械吻合器的引入对冠状动脉搭桥术近端吻合区血流动力学因素的影响,运用Solidworks软件构造了缝合式和机械吻合式两种搭桥模型。运用有限单元数值模拟的方法和Fluent6.3软件,对两种模型移植血管中脉动流进行数值化模拟和可视化分析。获得了吻合区在一个心动周期内不同时刻的速度场、二次流、压力及壁面切应力的分布情况。结果表明,机械吻合器的引入在增大移植血管中血流速度(大于缝合模型约0.2 m/s)的同时使得低速区范围增大,吻合区壁面切应力变化范围为0~50 Pa,应力集中现象明显,壁面切应力变化剧烈,易引起血小板活化和内膜增生。为了提高冠状动脉搭桥术的通畅率,对机械吻合器进行优化设计很有必要。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号