首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
壁面厚度对一体化小腿假肢应力分布的影响   总被引:6,自引:0,他引:6  
一体化假肢是以聚合物为材料从接受腔到假腿一体成型的新型下肢假肢 ,它比传统型假肢更经济、美观、轻便 ,具有较大的应用前景。如同传统假肢 ,应力分析对于一体化假肢的构型设计和优化具有重要的意义。由于假肢中的应力大小及分布与其所用材料的力学特性密切相关。本文的工作是基于一实验用内骨架一体化小腿假肢的真实几何构型 ,考虑残端软组织和骨 ,建立一体化小腿假肢的三维有限元模型 ;在保持假肢的几何形状不变的前提下 ,建立三个不同壁面厚度的一体化小腿假肢的三维模型 ,应用有限元分析方法 ,计算这些模型在模拟 Heel Off步态时相的载荷作用下的应力分布 ,分析壁面厚度对一体化小腿假肢应力分布的影响 ,为一体化小腿假肢壁面厚度的设计标准提供参考。结果表明 ,可以通过适当增加壁面厚度来减小一体化假肢的应力及软组织表面的压力。  相似文献   

2.
一体化小腿假肢的三维有限元应力分析   总被引:6,自引:1,他引:5  
建立一体化小腿假肢和残肢的三维模型,应用有限元分析方法,计算此模型在模拟Mid—Stance步态时相的载荷作用下各节点的应力,从而得到此模型内外表面的应力分布,为一体化假肢设计的CAD\CAM系统提供理论依据。计算结果表明,接受腔的应力值较小,假腿的应力值较大,高应力区出现在假腿下端及接受腔与假腿的交界区域。  相似文献   

3.
一体化假肢是以聚合物为材料从接受腔到假腿一体成型的新型下肢假肢,它比传统型假肢更经济、美观、轻便,具有较大的应用前景。目前的相关研究主要集中在设计与制作及少量的临床研究方面。由于一体化假肢与传统型假肢在结构上的差异,有必要对其进行应力分析。本研究的目的是开展内骨架一体化假肢的生物力学研究,本研究基于内骨架一体化小腿假肢的真实几何构型,建立三维有限元模型,计算该模型在模拟Heel OH步态时相的载荷作用下的应力分布;在保持该模型的几何形状不变的情况下,建立了三个不同壁面厚度的一体化小腿假肢的有限元模型,分析壁面厚度对一体化小腿假肢应力分布的影响;通过分别赋予模型四种不同高分子聚合物的材料力学特性值,分析不同材料的一体化假肢的应力分布特点;分别对模型施加与正常步态的五个典型时相对应的载荷,分析一体化小腿假肢在各步态时相的应力分布特点。本研究结果对一体化假肢设计有指导价值。  相似文献   

4.
Lower-limb prostheses are used to restore amputee's walking. Monolimb is one of the designs referring to socket and the shank being molded into one piece of thermoplastic material. Appropriate shank flexibility of a monolimb can improve gait of an amputee. However, during the fabrication, the variations of design variables are inevitably produced which may lead the unexpected shank deflection and directly influence on gait efficiency of an amputee. This paper presents a robust design procedure for improvement of quality of the monolimb by simultaneously minimizing performance variations caused by variations in design variables and bringing the mean value of performance on target. The robust design procedure embodies the integration of response surface methodology with genetic algorithms. Response surface models are developed for the responses of monolimb as functions of design variables over the region of interest and genetic algorithms are employed to find the robust solution. A robust design of monolimb is performed for an amputee subject and the results show that the robust design can design a "robust" monolimb which provides specified performance targets that are minimally sensitive to the variations of design variables. This indicates that robust design may have the potential application in improving the quality of the prescribed prosthesis.  相似文献   

5.
In this work, the effect of walking speed on the energy expenditure in traumatic lower-limb amputees was studied. The oxygen consumption was measured in 10 transfemoral amputees, 9 transtibial amputees and 13 control subjects, while they stood and walked at different speeds from 0.3 m s(-1) to near their maximum sustainable speed. Standing energy expenditure rate was the same in lower-limb amputees and in control subjects (approximately 1.85 W kg(-1)). On the contrary, during walking, the net energy expenditure rate was 30-60% greater in transfemoral amputees and 0-15% greater in transtibial amputees than in control subjects. The maximal sustainable speed was about 1.2 m s(-1) in transfemoral amputees and 1.6 m s(-1) in transtibial amputees, whereas it was above 2 m s(-1) in control subjects. Among these three groups, the cost of transport versus speed presented a U-shaped curve; the minimum cost increased with the level of amputation, and the speed at which this minimum occurred decreased.  相似文献   

6.
To design against premature mechanical failure, most implant devices such as coronary and endovascular stents are assessed on the basis of survival, i.e., if a fatigue life of 10(8) cycles is required, testing is performed to ascertain whether the device will survive 10(8) cycles under accelerated in vitro loading conditions. This is a far from satisfactory approach as the safety factors, which essentially tell you how close you are to failure, remain unknown; rather, the probability of fatigue failure should instead be assessed on the basis of testing to failure. In this work, a new damage-tolerant analysis of a cardiovascular stent is presented, where the design life is conservatively evaluated using a fracture mechanics methodology. In addition to enabling estimates of safe in vivo lifetimes to be made, this approach serves to quantify the effect of flaws in terms of their potential effect on device failure, and as such provides a rational basis for quality control.  相似文献   

7.
背景:碳纤维增强复合材料小腿假肢是由碳纤维复合材料设计制作而成,其强度高、质量轻,使假肢功能更完善,尤其是残疾竞技运动员发挥运动能力的理想截肢替代物。 目的:通过探讨由碳纤维复合材料制成的碳纤维增强复合材料小腿假肢在竞技运动小腿假肢的应用和研究进展,了解不同运动项目小腿假肢的应用特点,为设计运动员假肢提供有益借鉴。 方法:以“碳纤维增强复合材料、储能假肢、小腿假肢、残疾运动员”为中文关键词,以“CFRP,Energy-storing Prosthesis,Between-knee(Transtibial)prosthesis,Disable athletes”为英文关键词,采用计算机检索PubMed和维普数据库中1985年1月至2012年12月的相关文章。纳入与碳纤维增强复合材料储能小腿假肢应用相关的文章。 结果与结论:目前的研究重点包括穿戴碳纤维增强复合材料储能小腿假肢运动员的步态分析、能量消耗和应力分析3个方面。目前的研究表明碳纤维增强复合材料储能小腿假肢确实比传统假肢具有更大的优势,而与正常肢体相比,差别明显。在实际应用中,如何根据运动员的自身和项目特点设计碳纤维增强复合材料储能小腿假肢仍存在很多研究的难点问题。  相似文献   

8.
Single and multi-strand stainless steel and cobalt-nickel alloy wires, with strand diameters from 26 to 46 microns, were fatigue tested using a modified rotating bending test to determine what factors are most important in controlling fatigue life. The relation between cyclic strain and cyclic life was determined for each material by cyclically straining test specimens at various strain ranges and recording the number of cycles to failure. The results show that (a) the fatigue curves of the 316LVM, MP35N, DBS, and Syntacoben wires are very similar and have many of the same fatigue characteristics of specimens of large cross section. (b) Multi-stranded wires have the same average fatigue life as their individual constituent strands, but the variance of that life is smaller. (c) Deformities in the wire, which are created during the manufacturing, appear to have the effect of shortening the fatigue life of these small section wires. (d) Observation of wire fracture surfaces show a relatively small crack propagation zone and a large fast fracture zone suggesting that most of the fatigue life of these small wires is in the original crack formation, which creates a large stress concentration and quickly leads to wire failure. (e) The size of the wire cross sectional area is of secondary importance compared to the amplitude of the maximum cyclic strain of the individual strands in determining fatigue life of the cable. To maximize the fatigue life of electrodes in vivo, the highest fatigue life for a given bending radius of curvature is desired. This suggests wire strands should be manufactured at the smallest diameter possible (without introducing structural flaws) to maximize service life.  相似文献   

9.
This paper reports on the damaging effects of different percentage porosities on the fatigue life of acrylic bone cement as used in the fixation of orthopaedic implants. Both hand-mixed (HM) and vacuum-mixed (VM) specimens containing different levels of porosity were fatigue tested to failure. A negative correlation between porosity level and fatigue life was demonstrated for both techniques. Considerable scatter was present in the data. Using the pore size distributions for HM and VM cement virtual HM and VM specimens were created containing various levels of porosity. Incorporating the effect of pore size and pore clustering quantified previously using the theory of critical distances a fatigue life prediction could be obtained for the virtual specimens. The virtual data agreed strongly with the experimental findings, predicting the correlation and more significantly the scatter in the experimental results. Using the virtual porosity failure model, it was demonstrated that given a constant porosity the fatigue life can vary by over an order of magnitude in both HM and VM cement. This suggests that not only porosity level but pore size distribution is extremely important in controlling the fatigue life of bone cement. It was verified that pore clustering and pore size are the major contributors to failure in HM and VM cement respectively. Furthermore, given the beneficial effects of porosity it has been proposed that an even distribution of small pores would provide an optimal bone cement mantle. Using the virtual model, it was determined that neither technique was capable of achieving such a distribution indicating a need for a new more reliable technique. The TCD based virtual porosity failure model should prove to be a powerful tool in the design of such a technique.  相似文献   

10.
As cyclic fatigue is considered to be a major cause of clinical tooth fractures, achieving a comprehensive understanding of the fatigue behavior of dentin is of importance. In this note, the fatigue behavior of human dentin is examined in the context of the Kitagawa-Takahashi diagram to define the limiting conditions for fatigue failure. Specifically, this approach incorporates two limiting threshold criteria for fatigue: (i) a threshold stress for fatigue failure, specifically the smooth-bar (unnotched) fatigue endurance strength, at small crack sizes and (ii) a threshold stress-intensity range for fatigue-crack growth at larger crack sizes. The approach provides a "bridge" between the traditional fatigue life and fracture mechanics based damage-tolerant approaches to fatigue-life estimation, and as such defines a "failure envelope" of applied stresses and flaw sizes where fatigue failure is likely in dentin This approach may also be applied to fatigue failure in human cortical bone (i.e. clinical "stress fractures"), which exhibits similar fatigue behavior characteristics, and in principle may aid clinicians in making quantitative evaluations of the risk of fractures in mineralized tissues.  相似文献   

11.
12.
目的 通过对比股骨远端接骨板中A型、B型锁定加压接骨板(locking compression plate, LCP)的疲劳强度,为测试其弯曲强度及疲劳性能时对接骨板选型提供理论评估方法。方法 通过对不同类型接骨板进行弯曲强度性能测试与疲劳性能测试,再结合ANSYS Workbench对接骨板总变形、von Mises应力及疲劳使用寿命进行有限元分析。结果 A型接骨板疲劳强度比B型接骨板高30.7%,A型接骨板应力比B型接骨板要低,A型接骨板最低疲劳使用寿命比B型接骨板要高17%。结论 A型接骨板的疲劳性能比B型接骨板良好,故A型接骨板的失效可能性比B型接骨板的可能性要低。研究结果为测试新研发的两种接骨板各种性能时对不同接骨板选型辅助提供参考。  相似文献   

13.
Fracture surfaces of both monotonic and fatigue loaded bone cement samples were examined to investigate the fractographic characteristics of PMMA. Classic cleavage step river patterns were observed on all monotonically loaded samples, running downstream in the direction of crack propagation. All fatigue cracks initiated at internal pores and the direction of crack propagation of many cracks was discernible. Porosity, pore size, and pore size distribution were found to affect the crack initiation and fatigue behavior of bone cement. Statistical analysis revealed a strong negative correlation between two-dimensional porosity present on the fracture surfaces and the cycles to failure. The fractographic observations of these fatigue samples elucidate one reason why porosity reduction by centrifugation or vacuum mixing increases the fatigue life of PMMA bone cement.  相似文献   

14.
Poly(methyl methacrylate) (PMMA) bone cements have a long and successful history of use for implant fixation, but suffer from a relatively low fracture and fatigue resistance which can result in failure of the cement and the implant. Fiber or particulate reinforcement has been used to improve mechanical properties, but typically at the expense of the pre-cured cement viscosity, which is critical for successful integration with peri-implant bone tissue. Therefore, the objective of this study was to investigate the effects of zirconia fiber reinforcement on the fatigue life of acrylic bone cements while maintaining a relatively low pre-cured cement viscosity. Sintered straight or variable diameter fibers (VDFs) were added to a PMMA cement and tested in fully reversed uniaxial fatigue until failure. The mean fatigue life of cements reinforced with 15 and 20 vol% straight zirconia fibers was significantly increased by ~40-fold, on average, compared to a commercial benchmark (Osteobond?) and cements reinforced with 0–10 vol% straight zirconia fibers. The mean fatigue life of a cement reinforced with 10 vol% VDFs was an order of magnitude greater than the same cement reinforced with 10 vol% straight fibers. The time-dependent viscosity of cements reinforced with 10 and 15 vol% straight fibers was comparable to the commercial benchmark during curing. Therefore, the addition of relatively small amounts of straight and variable diameter zirconia fibers was able to substantially improve the fatigue resistance of acrylic bone cement while exhibiting similar handling characteristics compared to current commercial products.  相似文献   

15.
Although human dentin is known to be susceptible to failure under repetitive cyclic fatigue loading, there are few reports in the literature that reliably quantify this phenomenon. This study seeks to address the paucity of fatigue data through a systematic investigation of the effects of prolonged cyclical loading on human dentin in an environment of ambient temperature Hank's balanced salt solution (HBSS) at cyclic frequencies of 2 and 20 Hz. The "stress-life" (S/N) data thus obtained are discussed in the context of possible mechanisms of fatigue damage and failure in this material. In addition, stiffness loss data collected in situ during the S/N tests are used to deduce crack velocities and the thresholds for such cracking. These results are presented in a fracture mechanics context as plots of fatigue-crack propagation rates (da/dN) as a function of the stress-intensity range (Delta K). Such S/N and da/dN-Delta K data are discussed in light of the development of a framework for a fracture-mechanics-based methodology for the prediction of the fatigue life of teeth. It is concluded that the presence of small (on the order of 250 microm) incipient flaws in human teeth will not radically affect their useful life.  相似文献   

16.
An effective design method is suggested for a flexible keel design for energy-storing prosthetic feet (ESPF). The basic, two-dimensional shape of the keel is based on anthropometric data and normal gait analysis available in the literature. Cost function is defined for the performance evaluation of the keel. Five factors and five levels of their effect on the performance of the keel are established. By use of an orthogonal array table, 25 trials of dynamic simulations of prosthetic walking are designed, from among 3125 possible combinations, dramatically reducing the number of total simulations needed to examine sufficiently the contribution of each factor to cost function. A prosthetic walking model is built, and a dynamic simulation of prosthetic walking is performed using the finite element method. The contribution of each factor to cost function is investigated by an analysis of variance (ANOVA), and the average main effects of factors for cost function are calculated. The optimum combination of factor levels is obtained by minimisation of cost function. To examine the structural safety of the keel, the deformation and stress distribution of the keel are investigated by static analysis, and failure indices are calculated by three failure criteria. Finally, the optimum flexible keel is designed with increased energy storage capacity, without failure, and suitable for more active prosthetic walking; the recoverable strain energy stored in the optimum ESPF keel is 25.8 J.  相似文献   

17.
In this article, we investigated the effects of substrate creep on the fatigue life of a model dental multilayer structure, in which a top glass layer was bonded to a polycarbonate substrate through a dental adhesive. The top glass layers were ground using 120 or 600 grit sand papers before bonding to create different subsurface crack sizes and morphologies. The multilayer structures were tested under cyclic Hertzian contact loading to study crack growth and obtain fatigue life curves. The experiment results showed that the fatigue lives of the multilayer structures were impaired by increasing crack sizes in the subsurfaces. They were also significantly reduced by the substrate creep when tested at relatively low load levels, i.e. P(m) < 60 N (P(m) is the maximum magnitude of cyclic load). But at relatively high load levels, i.e. P(m) > 65 N, slow crack growth was the major failure mechanism. A modeling study was then carried out to explore the possible failure mechanisms over a range of load levels. It is found that fatigue life at relatively low load levels can be better estimated by considering the substrate creep effect.  相似文献   

18.
背景:一些随机对照研究试图回答关节镜下经胫骨骨道入路与前内侧入路重建前交叉韧带疗效优劣问题,得出结论各不相同。 目的:关节镜下经胫骨骨道入路与前内侧入路重建前交叉韧带疗效Meta分析。 方法:计算机检索PubMed、Embase、Cochrane图书馆及中国生物医学数据库、维普信息数据库、万方数据库,手工检索相关的中英文骨科杂志。收集关节镜下经胫骨骨道入路与前内侧入路重建前交叉韧带的对照试验,并评价纳入研究的方法学质量。统计软件用Cochrane协作网提供的RevMan 5.0。 结果与结论:共纳入7个研究。Meta分析表明,与胫骨骨道入路相比,前内侧入路制作的股骨隧道的长度较短[RR 3.91,95%CI(1.49,6.34)]、[RR 12.73,95%CI(11.91,13.55)]、股骨隧道冠状面骨道角度较垂直[RR 18.18,95%CI(17.10,19.25)]、胫骨矢状面胫骨隧道位置较靠前[RR 6.16,95%CI(5.23,7.10)]、术后膝关节Lysholm功能评分高[RR 6.16,95%CI(-3.59,-2.63)],差异有显著性意义。分析结果说明,关节镜下通过前内侧入路比经胫骨隧道入路重建前交叉韧带更接近解剖重建,修复疗效更好。 中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程  相似文献   

19.
Modeling fatigue damage evolution in bone   总被引:4,自引:0,他引:4  
A simple analytical model for damage evolution of bone fatigue is presented. A probabilistic method for characterizing the damage accumulation in terms of microcracks for bone fatigue was developed. The crack numerical density distributions were obtained from the Monte Carlo simulations with a Weibull distribution fit in this study. The results predicted from the present model are compared with existing experimental data and discussed. The quantitative relationship between stiffness loss, loading cycles and microdamage parameter developed in this study may be useful for fatigue life and failure stress predictions.  相似文献   

20.
Antagonistic contact on a dental restoration may produce surface and subsurface stresses leading to fatigue wear as well as to bulk stressing, eventually causing catastrophic failure. It was the aim of the present work to study the outcome of two different approaches to fatigue testing of materials involving either surface contact fatigue or flexural fatigue mechanisms. A range of materials was tested, including conventional glass-ionomers, resin-modified glass-ionomers, poly-acid modified composites, and composites. Materials were prepared and tested using both surface contact and flexural fatigue. The results show that conventional glass-ionomers have the least resistance to fatigue under both regimes while composites have the longest fatigue lives and the highest values of flexural fatigue limit. However, the results also support the fact that catastrophic failure should be investigated separately from surface contact fatigue. Within the group of composite products tested, a hybrid composite material had a significantly greater flexural fatigue limit than a microfilled one, but the latter material had a significantly greater surface contact fatigue life, indicating that wear behavior cannot be predicted from bulk fracture characteristics and vice versa. The process of wear occurs by a combination of a number of fundamental processes, and the contribution fatigue makes will vary according to the environment and nature of the material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号