首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
目的定位一个先天性全白内障家系的致病基因。方法收集一个先天性全白内障家系中10个成员的外周血样本,提取基因组DNA。应用ABI-MD10试剂盒中的常染色体382个微卫星位点,对此家系进行全基因组扫描。MLINK软件进行两点连锁分析。结果发现在D13S263位点处提示存在连锁(最大LOD=1.20,重组率θ=0),进一步检测该位点附近若干其它的微卫星标记,经连锁分析其致病基因被定位到D13S175和D13S156之间的大约53.9厘摩(cM)区域上。结论该家系致病基因位点被定位到13号染色体的13q12.11-q22.1之间的大约53.9cM区域上。此研究为探讨遗传性全白内障的发病机制提供了有价值的信息,并为该家系今后开展产前诊断奠定了基础。  相似文献   

2.
目的 对一个中国人先天性常染色体显性遗传性全白内障家系的相关致病基因进行定位分析.方法 收集一个先天性全白内障家系中10个成员的外周血样本,提取基因组DNA.应用PCR技术对已报道的与先天性白内障相关致病基因附近的微卫星多态性标记进行检测,使用Mlink软件对结果进行连锁分析,最终绘制该家系各成员的单体型图,初步定位致病基因.结果 通过对15个微卫星位点的分析,发现在D21S212位点处存在连锁(最大LOD=1.20,重组率θ=0),进一步检测该位点附近6个微卫星标记,经连锁分析确定致病基因位置.结论 该家系的相关致病基因初步定位于染色体21q11.2-qter,此范围内的CRYAA基因可能为其致病基因.本研究将对遗传性全白内障的发病机制提供有价值的信息.  相似文献   

3.
非综合征性耳聋一家系的基因定位   总被引:1,自引:0,他引:1  
目的:定位1个一级表亲婚配非综合征性耳聋家系的致病基因,为分离该基因奠定基础。方法:先进行X染色体扫查,排除致病基因位于X染色体的可能;随后采用纯合子定位法,进行候选基因分析和常染色体基因组扫查;再对提示与致病基因紧密连锁的位点所在区域进一步分析,确定致病基因所在区域。结果:确认该家系的非综合征性耳聋为常染色体隐性遗传方式,候选基因分析排除25个已知基因是该家系致病基因的可能,而常染色体扫查提示致病基因位于D17S1293附近,进一步分析将其定位于D17S1850和D17S1818之间5.07cM区域。结论:该家系的致病基因定位于17q11.2-12的D17S1850和D17S1818之间5.07cM区域,是新的常染色体隐性遗传非综合征性耳聋致病基因位点。  相似文献   

4.
目的 对一个连续3代常染色体显性遗传性先天性视网膜脉络膜缺损(autosomal dominant congenital retinaochoroidal coloboma)家系进行致病基因的连锁定位分析.方法 对家系所有成员进行详细的临床检查,排除其他系统疾患.提取家系成员外周血DNA,选取位于全部染色体上的398对微卫星标记物,进行全基因组扫描.经ABI3130型遗传分析仪,Genescan收集数据,Genotyper进行基因分型,Linkage软件计算两点Lod值.结果 在2号染色体长臂上的微卫星标记物D2S2382取得最大的Lod值,其Lod值为3.01.进一步在D2S2382附近选择微卫星标记物,进行连锁分析,发现微卫星标记物D2S2382-D2S301-D2S2244-D2S163与家系中所有患者疾病表型共分离.结论 将一个常染色体显性遗传性先天性视网膜脉络膜缺损家系的致病基因定位于2q34-2q35之间的3.80 cM范围内.  相似文献   

5.
目的 对一个连续3代常染色体显性遗传性先天性视网膜脉络膜缺损(autosomal dominant congenital retinaochoroidal coloboma)家系进行致病基因的连锁定位分析.方法 对家系所有成员进行详细的临床检查,排除其他系统疾患.提取家系成员外周血DNA,选取位于全部染色体上的398对微卫星标记物,进行全基因组扫描.经ABI3130型遗传分析仪,Genescan收集数据,Genotyper进行基因分型,Linkage软件计算两点Lod值.结果 在2号染色体长臂上的微卫星标记物D2S2382取得最大的Lod值,其Lod值为3.01.进一步在D2S2382附近选择微卫星标记物,进行连锁分析,发现微卫星标记物D2S2382-D2S301-D2S2244-D2S163与家系中所有患者疾病表型共分离.结论 将一个常染色体显性遗传性先天性视网膜脉络膜缺损家系的致病基因定位于2q34-2q35之间的3.80 cM范围内.  相似文献   

6.
目的 对一个连续3代常染色体显性遗传性先天性视网膜脉络膜缺损(autosomal dominant congenital retinaochoroidal coloboma)家系进行致病基因的连锁定位分析.方法 对家系所有成员进行详细的临床检查,排除其他系统疾患.提取家系成员外周血DNA,选取位于全部染色体上的398对微卫星标记物,进行全基因组扫描.经ABI3130型遗传分析仪,Genescan收集数据,Genotyper进行基因分型,Linkage软件计算两点Lod值.结果 在2号染色体长臂上的微卫星标记物D2S2382取得最大的Lod值,其Lod值为3.01.进一步在D2S2382附近选择微卫星标记物,进行连锁分析,发现微卫星标记物D2S2382-D2S301-D2S2244-D2S163与家系中所有患者疾病表型共分离.结论 将一个常染色体显性遗传性先天性视网膜脉络膜缺损家系的致病基因定位于2q34-2q35之间的3.80 cM范围内.  相似文献   

7.
目的 对一个连续3代常染色体显性遗传性先天性视网膜脉络膜缺损(autosomal dominant congenital retinaochoroidal coloboma)家系进行致病基因的连锁定位分析.方法 对家系所有成员进行详细的临床检查,排除其他系统疾患.提取家系成员外周血DNA,选取位于全部染色体上的398对微卫星标记物,进行全基因组扫描.经ABI3130型遗传分析仪,Genescan收集数据,Genotyper进行基因分型,Linkage软件计算两点Lod值.结果 在2号染色体长臂上的微卫星标记物D2S2382取得最大的Lod值,其Lod值为3.01.进一步在D2S2382附近选择微卫星标记物,进行连锁分析,发现微卫星标记物D2S2382-D2S301-D2S2244-D2S163与家系中所有患者疾病表型共分离.结论 将一个常染色体显性遗传性先天性视网膜脉络膜缺损家系的致病基因定位于2q34-2q35之间的3.80 cM范围内.  相似文献   

8.
目的 对一个连续3代常染色体显性遗传性先天性视网膜脉络膜缺损(autosomal dominant congenital retinaochoroidal coloboma)家系进行致病基因的连锁定位分析.方法 对家系所有成员进行详细的临床检查,排除其他系统疾患.提取家系成员外周血DNA,选取位于全部染色体上的398对微卫星标记物,进行全基因组扫描.经ABI3130型遗传分析仪,Genescan收集数据,Genotyper进行基因分型,Linkage软件计算两点Lod值.结果 在2号染色体长臂上的微卫星标记物D2S2382取得最大的Lod值,其Lod值为3.01.进一步在D2S2382附近选择微卫星标记物,进行连锁分析,发现微卫星标记物D2S2382-D2S301-D2S2244-D2S163与家系中所有患者疾病表型共分离.结论 将一个常染色体显性遗传性先天性视网膜脉络膜缺损家系的致病基因定位于2q34-2q35之间的3.80 cM范围内.  相似文献   

9.
目的 对一个连续3代常染色体显性遗传性先天性视网膜脉络膜缺损(autosomal dominant congenital retinaochoroidal coloboma)家系进行致病基因的连锁定位分析.方法 对家系所有成员进行详细的临床检查,排除其他系统疾患.提取家系成员外周血DNA,选取位于全部染色体上的398对微卫星标记物,进行全基因组扫描.经ABI3130型遗传分析仪,Genescan收集数据,Genotyper进行基因分型,Linkage软件计算两点Lod值.结果 在2号染色体长臂上的微卫星标记物D2S2382取得最大的Lod值,其Lod值为3.01.进一步在D2S2382附近选择微卫星标记物,进行连锁分析,发现微卫星标记物D2S2382-D2S301-D2S2244-D2S163与家系中所有患者疾病表型共分离.结论 将一个常染色体显性遗传性先天性视网膜脉络膜缺损家系的致病基因定位于2q34-2q35之间的3.80 cM范围内.  相似文献   

10.
目的 对一个连续3代常染色体显性遗传性先天性视网膜脉络膜缺损(autosomal dominant congenital retinaochoroidal coloboma)家系进行致病基因的连锁定位分析.方法 对家系所有成员进行详细的临床检查,排除其他系统疾患.提取家系成员外周血DNA,选取位于全部染色体上的398对微卫星标记物,进行全基因组扫描.经ABI3130型遗传分析仪,Genescan收集数据,Genotyper进行基因分型,Linkage软件计算两点Lod值.结果 在2号染色体长臂上的微卫星标记物D2S2382取得最大的Lod值,其Lod值为3.01.进一步在D2S2382附近选择微卫星标记物,进行连锁分析,发现微卫星标记物D2S2382-D2S301-D2S2244-D2S163与家系中所有患者疾病表型共分离.结论 将一个常染色体显性遗传性先天性视网膜脉络膜缺损家系的致病基因定位于2q34-2q35之间的3.80 cM范围内.  相似文献   

11.
目的报告2例阵发性运动诱发的运动障碍(paroxysmal kinesigenic dyskinesia,PKD)并复习相关文献。方法通过复习阵发性运动诱发的运动障碍的相关文献,结合报告的2例该病,总结阵发性运动诱发的运动障碍的临床特点、发病机制及目前分子生物学的研究进展。结果临床上阵发性运动诱发的运动障碍多由运动触发,发作持续时间一般〈1min,发作过程中无意识障碍或疼痛,神经系统检查正常,无其他器质性疾病,拉莫三嗪、苯妥英或卡马西平等抗癫痫药物治疗有效等特点。PKD的临床表现与离子通道源性神经系统疾病存在许多相似之处,离子通道学说被认为是PKD最可能的一种发病机制。结论 PKD由运动触发,病史是明确诊断的唯一依据。临床可应用抗癫痫药物治疗,预后一般良好。  相似文献   

12.
目的 研究罕见的发作性疾病——阵发性运动源性运动障碍。方法 回顾性分析典型的阵发性运动源性运动障碍18例,阐述该病的特异性,并综合文献,简述其发病机制及遗传规律。结果 男性11例,女性7例,发病年龄7岁~27岁(平均13岁)。12例有家族史(66.6%),考虑为常染色体显性遗传。讨论了本症的临床表现。结论 发作性舞蹈徐动症是一种由这动诱发的、短暂的发作性局部或全身不随意运动,为常染色体显性遗传,用抗癫痫药疗效好。  相似文献   

13.
No evidence of genetic heterogeneity in dominant optic atrophy.   总被引:2,自引:2,他引:2       下载免费PDF全文
Autosomal dominant optic atrophy (OPA, MIM 165500) is an eye disease causing a variable reduction of visual acuity with an insidious onset in the first six years of life. It is associated with a central scotoma and an acquired blue-yellow dyschromatopsia. A gene for dominant optic atrophy (OPA1) has recently been mapped to chromosome 3q in three large Danish pedigrees. Here, we confirm the mapping of OPA1 to chromosome 3q28-qter by showing close linkage of the disease locus to three recently reported microsatellite DNA markers in the interval defined by loci D3S1314 and D3S1265 in four French families (Zmax = 5.13 at theta = 0 for probe AFM 308yf1 at locus D3S1601). Multipoint analysis supports the mapping of the disease gene to the genetic interval defined by loci D3S1314 and D3S1265. The present study provides three new markers closely linked to the disease gene for future genetic studies in OPA.  相似文献   

14.
Paroxysmal kinesigenic dyskinesia (PKD (MIM128000)) is a neurological disorder characterized by recurrent attacks of involuntary movements. Benign familial infantile convulsion (BFIC) is also one of a neurological disorder characterized by clusters of epileptic seizures. The BFIC1 (MIM601764), BFIC2 (MIM605751) and BFIC4 (MIM612627) loci have been mapped to chromosome 19q, 16p and 1p, respectively, while BFIC3 (MIM607745) is caused by mutations in SCN2A on chromosome 2q24. Furthermore, patients with BFIC have been observed in a family concurrently with PKD. Both PKD and BFIC2 are heritable paroxysmal disorders and map to the same region on chromosome 16. Recently, the causative gene of PKD, the protein-rich transmembrane protein 2 (PRRT2), has been detected using whole-exome sequencing. We performed mutation analysis of PRRT2 by direct sequencing in 81 members of 17 families containing 15 PKD families and two BFIC families. Direct sequencing revealed that two mutations, c.649dupC and c.748C>T, were detected in all members of the PKD and BFIC families. Our results suggest that BFIC2 is caused by a truncated mutation that also causes PKD. Thus, PKD and BFIC2 are genetically identical and may cause convulsions and involuntary movements via a similar mechanism.  相似文献   

15.
Autosomal dominant optic atrophy (OPA, MIM 165500) is an eye disease characterised by variable optic atrophy and reduction in visual acuity. It has an insidious onset in the first decade of life and is clinically highly heterogeneous. It is associated with a centrocecal scotoma of varying size and density and an acquired blue-yellow dyschromatopsia. Recent studies of three large Danish pedigrees have mapped a gene for dominant optic atrophy (OPA1) to a 10 cM region on chromosome 3q, between markers D3S1314 and D3S1265 (3q28-qter). Genetic linkage analysis in five British pedigrees confirms mapping to chromosome 3q28-qter. Haplotype analysis of a seven generation pedigree positions the disease causing gene between loci D3S3590 and D3S1305, corresponding to a genetic distance of 2 cM. This represents a significant linkage refinement and should facilitate positional cloning of the disease gene.  相似文献   

16.
Genetic linkage studies have provided significant evidence thata major gene defect, AD3, for familial early-onset Alzheimer'sdisease (EOAD) is located at chromosome 14q24.3, between theshort tandem repeat (STR) markers D14S52 and D14S53 defininga genetic size of 22.7 cM for the AD3 candidate region. We constructeda physical map of the AD3 region using yeast artificial chromosomes(YACs) selected from both the CEPH and megaCEPH YAC librariesusing the AD3 linked STR markers as well as new sequence-taggedsites (STSs) designed based on YAC terminal sequences. The YACmap is contiguous in the region between D14S258 and D14S53,a region of 8.2 cM, and has an estimated physical size of 4–8Mb. The YAC contig map was used as a framework to localize threeknown genes, a pseudogene and two brain expressed sequence tags(ESTs). Linkage analysis studies in two Belgian chromosome 14EOAD families AD/A and AD/B, identified obligate recombinantsin family AD/A with D14S289 and D14S61 reducing the geneticsize of the candidate AD3 region substantially. The minimalAD3 candidate region measured 6.4 cM on the genetic map andis contained within six overlapping megaCEPH YACs that covereda physical distance estimated between 2 and 6 Mb. These YACsas well as other YACs in the YAC contig map are valuable resourcesin gene cloning efforts or genomic sequencing experiments aimingat isolating the AD3 gene.  相似文献   

17.
To define the PKD1 locus further, the gene involved in the most frequent form of adult polycystic kidney disease, probes from 16 polymorphic loci were mapped on 16p13.1-pter with the combined use of cell lines containing rearranged chromosomes and family studies. Five breakpoints in the distal part of 16p arbitrarily subdivided the loci into five groups. By analysing 58 recombination events among 259 informative meioses in 12 large families with PKD, we were able to construct a linkage map for the distal part of 16p. The order of the markers obtained with chromosomal rearrangements was confirmed by the family studies. The D16S85 locus near alpha globin, D16S21, and D16S83 map distal, or telomeric, to PKD1. The polymorphic red cell enzyme phosphoglycolate phosphatase (PGP), D16S84, D16S259, and D16S246 showed no recombination with PKD1. The remaining nine RFLPs all map proximal to the PKD1 gene. By cosmid walking, additional RFLPs were detected at the D16S21 locus. A single intrahaplotype recombination observed defines the orientation of D16S21 relative to PKD1. The new polymorphisms are valuable for presymptomatic and prenatal diagnosis of PKD1. Furthermore, our map is both a good starting point for the physical map of 16p and a useful tool for the isolation of the PKD1 gene.  相似文献   

18.
Mutations in PRRT2 have been described in paroxysmal kinesigenic dyskinesia (PKD) and infantile convulsions with choreoathetosis (PKD with infantile seizures), and recently also in some families with benign familial infantile seizures (BFIS) alone. We analyzed PRRT2 in 49 families and three sporadic cases with BFIS only of Italian, German, Turkish, and Japanese origin and identified the previously described mutation c.649dupC in an unstable series of nine cytosines to occur in 39 of our families and one sporadic case (77% of index cases). Furthermore, three novel mutations were found in three other families, whereas 17% of our index cases did not show PRRT2 mutations, including a large family with late‐onset BFIS and febrile seizures. Our study further establishes PRRT2 as the major gene for BFIS alone. Hum Mutat 33:1439–1443, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Pendred syndrome is an autosomal recessive disease characterised by congenital sensorineural deafness and goitre. The gene responsible for Pendred syndrome has been mapped to chromosome 7q31 in a 5.5 centimorgan (cM) interval flanked by D7S501 and D7S523. This interval was recently refined a to 1.7 cM interval located between D7S501 and D7S692. In the present study, we report linkage analysis data on a large consanguineous family genotyped with eight microsatellite markers located between D7S501 and D7S523. Complete cosegregation with the disease locus was observed with the loci analysed, which further supports locus homogeneity for Pendred syndrome and close linkage to this region. Haplotype analysis placed the Pendred syndrome gene between D7S496 and D7S2425 in a 0.8 cM interval. This additional refinement of the Pendred syndrome region will facilitate the construction of a physical map of the region and will help the identification of candidate genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号