首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Trigeminal neuropathic pain is the most debilitating pain disorder but current treatments including opiates are not effective. A common symptom of trigeminal neuropathic pain is cold allodynia/hyperalgesia or cold hypersensitivity in orofacial area, a region where exposure to cooling temperatures are inevitable in daily life. Mechanisms underlying trigeminal neuropathic pain manifested with cold hypersensitivity are not fully understood. In this study, we investigated trigeminal neuropathic pain in male rats following infraorbital nerve chronic constrictive injury (ION-CCI). Assessed by the orofacial operant behavioral test, ION-CCI animals displayed orofacial cold hypersensitivity. The cold hypersensitivity was associated with the hyperexcitability of small-sized trigeminal ganglion (TG) neurons that innervated orofacial regions. Furthermore, ION-CCI resulted in a reduction of A-type voltage-gated K+ currents (IA currents) in these TG neurons. We further showed that these small-sized TG neurons expressed Kv4.3 voltage-gated K+ channels, and Kv4.3 expression in these cells was significantly downregulated following ION-CCI. Pharmacological inhibition of Kv4.3 channels with phrixotoxin-2 inhibited IA-currents in these TG neurons and induced orofacial cold hypersensitivity. On the other hand, pharmacological potentiation of Kv4.3 channels amplified IA currents in these TG neurons and alleviated orofacial cold hypersensitivity in ION-CCI rats. Collectively, Kv4.3 downregulation in nociceptive trigeminal afferent fibers may contribute to peripheral cold hypersensitivity following trigeminal nerve injury, and Kv4.3 activators may be clinically useful to alleviate trigeminal neuropathic pain.SIGNIFICANCE STATEMENT Trigeminal neuropathic pain, the most debilitating pain disorder, is often triggered and exacerbated by cooling temperatures. Here, we created infraorbital nerve chronic constrictive injury (ION-CCI) in rats, an animal model of trigeminal neuropathic pain to show that dysfunction of Kv4.3 voltage-gated K+ channels in nociceptive-like trigeminal ganglion (TG) neurons underlies the trigeminal neuropathic pain manifested with cold hypersensitivity in orofacial regions. Furthermore, we demonstrate that pharmacological potentiation of Kv4.3 channels can alleviate orofacial cold hypersensitivity in ION-CCI rats. Our results may have clinical implications in trigeminal neuropathic pain in human patients, and Kv4.3 channels may be an effective therapeutic target for this devastating pain disorder.  相似文献   

2.
Cold hypersensitivity is evident in a range of neuropathies and can evoke sensations of paradoxical burning cold pain. Ciguatoxin poisoning is known to induce a pain syndrome caused by consumption of contaminated tropical fish that can persist for months and include pruritus and cold allodynia; at present no suitable treatment is available. This study examined, for the first time, the neural substrates and molecular components of Pacific ciguatoxin‐2‐induced cold hypersensitivity. Electrophysiological recordings of dorsal horn lamina V/VI wide dynamic range neurones were made in non‐sentient rats. Subcutaneous injection of 10 nm ciguatoxin‐2 into the receptive field increased neuronal responses to innocuous and noxious cooling. In addition, neuronal responses to low‐threshold but not noxious punctate mechanical stimuli were also elevated. The resultant cold hypersensitivity was not reversed by 6‐({2‐[2‐fluoro‐6‐(trifluoromethyl)phenoxy]‐2‐methylpropyl}carbamoyl)pyridine‐3‐carboxylic acid, an antagonist of transient receptor potential melastatin 8 (TRPM8). Both mechanical and cold hypersensitivity were completely prevented by co‐injection with the Nav1.8 antagonist A803467, whereas the transient receptor potential ankyrin 1 (TRPA1) antagonist A967079 only prevented hypersensitivity to innocuous cooling and partially prevented hypersensitivity to noxious cooling. In naive rats, neither innocuous nor noxious cold‐evoked neuronal responses were inhibited by antagonists of Nav1.8, TRPA1 or TRPM8 alone. Ciguatoxins may confer cold sensitivity to a subpopulation of cold‐insensitive Nav1.8/TRPA1‐positive primary afferents, which could underlie the cold allodynia reported in ciguatera. These data expand the understanding of central spinal cold sensitivity under normal conditions and the role of these ion channels in this translational rat model of ciguatoxin‐induced hypersensitivity.  相似文献   

3.
The Nav1.9 sodium channel is expressed in nociceptive DRG neurons where it contributes to spontaneous pain behavior after peripheral inflammation. Here, we used a newly developed antibody to investigate the distribution of Nav1.9 in rat and mouse trigeminal ganglion (TG) nerve endings and in enteric nervous system (ENS). In TGs, Nav1.9 was expressed in the soma of small- and medium-sized, peripherin-positive neurons. Nav1.9 was present along trigeminal afferent fibers and at terminals in lip skin and dental pulp. In the ENS, Nav1.9 was detected within the soma and proximal axons of sensory, Dogiel type II, myenteric and submucosal neurons. Immunological data were correlated with the detection of persistent TTX-resistant Na(+) currents sharing similar properties in DRG, TG and myenteric neurons. Collectively, our data support a potential role of Nav1.9 in the transmission of trigeminal pain and the regulation of intestinal reflexes. Nav1.9 might therefore constitute a molecular target for therapeutic treatments of orofacial pain and gastrointestinal syndromes.  相似文献   

4.
The present study investigated the role of mitogen-activated protein kinase (MAPK) in orofacial neuropathic pain following chronic constriction injury of the infraorbital nerve (ION-CCI). Experiments were carried out on male Sprague-Dawley rats weighing between 200 and 230 g. The ION was separated from adhering tissue, and two ligatures (5-0 chromic gut) were tied loosely around it. We examined the air-puff thresholds (mechanical allodynia), scores of pinprick (mechanical hyperalgesia), and face grooming frequency for acetone application (hypersensitivity for cold stimulation) - 3, 3, 6, 9, 12, 15, 20, 25, 30, and 40 days after surgery. ION-CCI produced mechanical allodynia, hyperalgesia, and cold hypersensitivity. We investigated whether administration of MAPKs inhibitors blocks ION-CCI-induced mechanical allodynia. Intracisternal administration with PD98059 or SB203580, a MEK inhibitor or a p38 MAPK inhibitor, respectively, significantly inhibited ION-CCI-induced mechanical allodynia in the orofacial area. These results indicate that the ION-CCI produced behavioral alterations in the orofacial area and those central MAPKs pathways contribute to orofacial neuropathic pain. Our findings suggest that MAPKs inhibitors have a potential role in treatment for orofacial neuropathic pain.  相似文献   

5.
Abstract

Objectives: Despite the etiology of trigeminal neuralgia has been verified by microvascular decompression as vascular compression of the trigeminal root, very few researches concerning its underlying pathogenesis has been reported in the literature. The present study focused on those voltage-gated sodium channels, which are the structural basis for generation of ectopic action potentials. Methods: The trigeminal neuralgia modeling was obtained with infraorbital nerve chronic constriction injury (ION-CCI) in rats. Two weeks postoperatively, the infraorbital nerve (TN), the trigeminal ganglion (TG), and the brain stem (BS) were removed and analyzed with a series of molecular biological techniques. Results: Western blot depicted a significant up-regulation of Nav1.3 in TN and TG but not in BS, while none of the other isoforms (Nav1.6, Nav1.7, Nav1.8, or Nav1.9) presented a statistical change. The Nav1.3 from ION-CCI group was quantified as 2.5-fold and 1.7-fold than that from sham group in TN and TG, respectively (p?<?.05). Immunocytochemistry showed the Nav1.3-IR from ION-CCI group accounted for 21.2?±?2.3% versus 6.1?±?1.2% from sham group in TN, while the Nav1.3-positive neurons from ION-CCI group accounted for 34.1?±?3.5% versus 11.2?±?1.8% from sham group in TG. Immunohistochemical labeling showed the Nav1.3 was co-localized with CGRP and IB4 but not with GFAP or NF-200 in TG. Conclusion: ION-CCI may give rise to an up-regulation of Nav1.3 in trigeminal nerve as well as in C-type neurons at the trigeminal ganglion. It implied that the ectopic action potential may generate from both the compressed site of the trigeminal nerve and the ganglion rather than from the trigeminal nuclei.  相似文献   

6.
Complex regional pain syndrome type I (CRPS-I) is characterized by intractable chronic pain. Poor understanding of the underlying mechanisms of CRPS-I accounts for the current unsatisfactory treatment. Antioxidants and antagonists of the oxidative stress-sensitive channel, the transient receptor potential ankyrin 1 (TRPA1), have been found to attenuate acute nociception and delayed allodynia in models of CRPS-I, evoked by ischemia and reperfusion (I/R) of rodent hind limb (chronic post ischemia pain, CPIP). However, it is unknown how I/R may lead to chronic pain mediated by TRPA1. Here, we report that the prolonged (day 1–15) mechanical and cold allodynia in the hind limb of CPIP mice was attenuated permanently in Trpa1−/− mice and transiently after administration of TRPA1 antagonists (A-967079 and HC-030031) or an antioxidant (α-lipoic acid). Indomethacin treatment was, however, ineffective. We also found that I/R increased macrophage (F4/80+ cell) number and oxidative stress markers, including 4-hydroxynonenal (4-HNE), in the injured tibial nerve. Macrophage-deleted MaFIA (Macrophage Fas-Induced Apoptosis) mice did not show I/R-evoked endoneurial cell infiltration, increased 4-HNE and mechanical and cold allodynia. Furthermore, Trpa1−/− mice did not show any increase in macrophage number and 4-HNE in the injured nerve trunk. Notably, in mice with selective deletion of Schwann cell TRPA1 (Plp1-CreERT;Trpa1fl/fl mice), increases in macrophage infiltration, 4-HNE and mechanical and cold allodynia were attenuated. In the present mouse model of CRPS-I, we propose that the initial oxidative stress burst that follows reperfusion activates a feed forward mechanism that entails resident macrophages and Schwann cell TRPA1 of the injured tibial nerve to sustain chronic neuroinflammation and allodynia. Repeated treatment one hour before and for 3 days after I/R with a TRPA1 antagonist permanently protected CPIP mice against neuroinflammation and allodynia, indicating possible novel therapeutic strategies for CRPS-I.  相似文献   

7.
The ectopic discharges observed in uninjured dorsal root ganglion (DRG) neurons following various lesions of spinal nerves have been attributed to functional alterations of voltage-gated sodium channels (VGSCs). Such mechanisms may be important for the development of neuropathic pain. However, the pathophysiology underlying the functional modulation of VGSCs following nerve injury is largely unknown. Here, we studied this issue with use of a selective lumbar 5 ventral root transection (L5-VRT) model, in which dorsal root ganglion (DRG) neurons remain intact. We found that the L5-VRT increased the current densities of TTX-sensitive Na channels as well as currents in Nav1.8, but not Nav1.9 channels in uninjured DRG neurons. The thresholds of action potentials decreased and firing rates increased in DRG neurons following L5-VRT. As we found that levels of tumor necrosis factor-alpha (TNF-α) increased in cerebrospinal fluid (CSF) and in DRG tissue after L5-VRT, we tested whether the increased TNF-α might result in the changes in sodium channels. Indeed, recombinant rat TNF (rrTNF) enhanced the current densities of TTX-S and Nav1.8 in cultured DRG neurons dose-dependently. Furthermore, genetic deletion of TNF receptor 1 (TNFR-1) in mice attenuated the mechanical allodynia and prevented the increase in sodium currents in DRG neurons induced by L5-VRT. These data suggest that the increase in sodium currents in uninjured DRG neurons following nerve injury might be mediated by over-production of TNF-α.  相似文献   

8.
Connexin36 (Cx36), a component of neuronal gap junctions, is crucial for interneuronal communication and regulation. Gap junction dysfunction underlies neurological disorders, including chronic pain. Following a peripheral nerve injury, Cx36 expression in the ipsilateral spinal dorsal horn was markedly decreased over time, which paralleled the time course of hind paw tactile allodynia. Intrathecal (i.t.) injection of Cx36 siRNA (1 and 5 pg) significantly reduced the expression of Cx36 protein in the lumbar spinal cord, peaking 3 days after the injection, which corresponded with the onset of hind paw tactile allodynia. It is possible that some of the tactile allodynia resulting from Cx36 downregulation could be mediated through excitatory neuromodulators, such as glutamate and substance P. The Cx36 knockdown‐evoked tactile allodynia was significantly attenuated by i.t. treatment with the N‐methyl‐D‐aspartate glutamate receptor antagonist MK‐801 but not the substance P receptor antagonist CP96345. Immunohistochemistry showed that Cx36 was colocalized with glycine transporter‐2, a marker for inhibitory glycinergic spinal interneurons, but not with glutamate decarboxylase 67, a marker for inhibitory GABAergic spinal interneurons. The results indicate that spinal inhibition through glycinergic interneurons is reduced, leading to increased glutamatergic neurotransmission, as a result of Cx36 downregulation. The current data suggest that gap junction dysfunction underlies neuropathic pain and further suggest a novel target for the development of analgesics. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
《Neuromodulation》2022,25(8):1393-1402
BackgroundWhile electroacupuncture (EA) has been used traditionally for the treatment of chronic pain, its analgesic mechanisms have not been fully clarified. We observed in an earlier study that EA could reverse inflammatory pain and suppress high Nav1.7 expression. However, the molecular mechanism underlying Nav1.7 expression regulation is unclear. In this study, we studied the relationship between the glucocorticoid receptor (GR) and Nav1.7 and the role of these molecules in EA analgesia.Materials and MethodsIn this study, we established an inflammatory pain model by intraplantar injection of complete Freund's adjuvant (CFA) in rats. EA stimulation was applied to the ipsilateral “Huantiao” (GB30) and “Zusanli” (ST36) acupoints in the rat model. Western blotting, real-time polymerase chain reaction, immunostaining, intrathecal injection, and chromatin immunoprecipitation (ChIP) assay were performed to determine whether the sodium channel protein Nav1.7 plays a role in CFA-induced pain and whether GR regulates Nav1.7 expression during analgesia following EA stimulation.ResultsEA application significantly decreased the paw withdrawal threshold thresholds and thermal paw withdrawal latency and suppressed GR and Nav1.7 expression in the dorsal root ganglion. Moreover, treatment with a GR sense oligonucleotide (OND) markedly reversed these alterations. In contrast, treatment with a GR antisense OND along with EA application exerted a better analgesic effect, which was accompanied by the suppression of Nav1.7 and GR protein expression. The ChIP assay showed that the binding activity of GR to the Nav1.7 promoter was enhanced in CFA injected rats and suppressed in EA-treated rats.ConclusionsThe present study demonstrated that EA exerted anti-hyperalgesic effects by inhibiting GR expression, which led to Nav1.7 expression modulation in the rat model of CFA-induced inflammatory pain.  相似文献   

10.
Transient receptor potential ankyrin 1 (TRPA1), responding to noxious cold and pungent compounds, is implicated in the mediation of nociception, but little is known about the processing of the TRPA1‐mediated nociceptive information within the trigeminal sensory nuclei (TSN) and the spinal dorsal horn (DH). To address this issue, we characterized the TRPA1‐positive (+) neurons in the trigeminal ganglion (TG) and investigated the distribution of TRPA1+ afferent fibers and their synaptic connectivity within the rat TSN and DH by using light and electron microscopic immunohistochemistry. In the TG, TRPA1 was expressed in unmyelinated and small myelinated axons and also occasionally in large myelinated axons. Many TRPA1+ neurons costained for the marker for peptidergic neurons substance P (26.8%) or the marker for nonpeptidergic neurons IB4 (44.5%). In the CNS, small numbers of axons and terminals were immunopositive for TRPA1 throughout the rostral TSN, in contrast to the dense network of positive fibers and terminals in the superficial laminae of the trigeminal caudal nucleus (Vc) and DH. The TRPA1+ terminals contained clear round vesicles, were presynaptic to one or two dendrites, and rarely participated in axoaxonic contacts, suggesting involvement in relatively simple synaptic circuitry with a small degree of synaptic divergence and little presynaptic modulation. Immunoreactivity for TRPA1 was also occasionally observed in postsynaptic dendrites. These results suggest that TRPA1‐dependent orofacial and spinal nociceptive input is processed mainly in the superficial laminae of the Vc and DH in a specific manner and may be processed differently between the rostral TSN and Vc. J. Comp. Neurol. 518:687–698, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Growth differentiation factor 15 (GDF-15) is a member of the transforming growth factor-β superfamily. It is widely distributed in the central and peripheral nervous systems. Whether and how GDF-15 modulates nociceptive signaling remains unclear. Behaviorally, we found that peripheral GDF-15 significantly elevated nociceptive response thresholds to mechanical and thermal stimuli in naïve and arthritic rats. Electrophysiologically, we demonstrated that GDF-15 decreased the excitability of small-diameter dorsal root ganglia (DRG) neurons. Furthermore, GDF-15 concentration-dependently suppressed tetrodotoxin-resistant sodium channel Nav1.8 currents, and shifted the steady-state inactivation curves of Nav1.8 in a hyperpolarizing direction. GDF-15 also reduced window currents and slowed down the recovery rate of Nav1.8 channels, suggesting that GDF-15 accelerated inactivation and slowed recovery of the channel. Immunohistochemistry results showed that activin receptor-like kinase-2 (ALK2) was widely expressed in DRG medium- and small-diameter neurons, and some of them were Nav1.8-positive. Blockade of ALK2 prevented the GDF-15-induced inhibition of Nav1.8 currents and nociceptive behaviors. Inhibition of PKA and ERK, but not PKC, blocked the inhibitory effect of GDF-15 on Nav1.8 currents. These results suggest a functional link between GDF-15 and Nav1.8 in DRG neurons via ALK2 receptors and PKA associated with MEK/ERK, which mediate the peripheral analgesia of GDF-15.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12264-021-00709-5.  相似文献   

12.
Inflammatory hypersensitivity is characterized by behavioural reductions in withdrawal thresholds to noxious stimuli. Although cutaneous primary afferent neurones are known to have lowered thermal thresholds in inflammation, whether their mechanical thresholds are altered remains controversial. The transient receptor potential channel A1 (TRPA1) is a receptor localized to putative nociceptive neurones and is implicated in mechanical and thermal nociception. Herein, we examined changes in the properties of single primary afferents in normal and acutely inflamed rats and determined whether specific nociceptive properties, particularly mechanical thresholds, are altered in the subpopulation of afferents that responded to the TRPA1 agonist cinnamaldehyde (TRPA1-positive afferents). TRPA1-positive afferents in normal animals belonged to the mechanonociceptive populations, many of which also responded to heat or capsaicin but only a few of which responded to cold. In acute inflammation, a greater proportion of afferents responded to cinnamaldehyde and an increased proportion of dorsal root ganglion neurones expressed TRPA1 protein. Functionally, in inflammation, TRPA1-positive afferents showed significantly reduced mechanical thresholds and enhanced activity to agonist stimulation. Inflammation altered thermal thresholds in both TRPA1-positive and TRPA1-negative afferents. Our data show that a subset of afferents is sensitized to mechanical stimulation by inflammation and that these afferents are defined by expression of TRPA1.  相似文献   

13.
Trigeminal neuralgia is often an early symptom of multiple sclerosis (MS), and it generally does not correlate with the severity of the disease. Thus, whether it is triggered simply by demyelination in specific central nervous system areas is currently questioned. Our aims were to monitor the development of spontaneous trigeminal pain in an animal model of MS, and to analyze: i) glial cells, namely astrocytes and microglia in the central nervous system and satellite glial cells in the trigeminal ganglion, and ii) metabolic changes in the trigeminal system. The subcutaneous injection of recombinant MOG1-125 protein fragment to Dark Agouti male rats led to the development of relapsing-remitting EAE, with a first peak after 13 days, a remission stage from day 16 and a second peak from day 21. Interestingly, orofacial allodynia developed from day 1 post injection, i.e. well before the onset of EAE, and worsened over time, irrespective of the disease phase. Activation of glial cells both in the trigeminal ganglia and in the brainstem, with no signs of demyelination in the latter tissue, was observed along with metabolic alterations in the trigeminal ganglion. Our data show, for the first time, the spontaneous development of trigeminal sensitization before the onset of relapsing-remitting EAE in rats. Additionally, pain is maintained elevated during all stages of the disease, suggesting the existence of parallel mechanisms controlling motor symptoms and orofacial pain, likely involving glial cell activation and metabolic alterations which can contribute to trigger the sensitization of sensory neurons.  相似文献   

14.
The present study investigated the role of microglia and p38 MAPK in the development of mechanical allodynia in rats with compression of the trigeminal ganglion. Male Sprague-Dawley rats weighing 250-260 g were used. Under pentobarbital sodium anesthesia, the animals were mounted onto a stereotaxic frame and given injections of 4% agar solution (10 μL) to compress the trigeminal ganglion. The air-puff thresholds significantly decreased after compression of the trigeminal ganglion. On postoperative day 14, immunoreactivity to both OX-42 and p-p38 MAPK was up-regulated in the medullary dorsal horn as compared to the sham group. P-p38 MAPK was found to be co-localized with OX-42, but not with NeuN, a neuronal cell marker, or with GFAP, an astroglial cell marker. Intracisternal administration of 100 μg of minocycline significantly inhibited both mechanical allodynia and activation of microglia produced by compression of the trigeminal ganglion. Intracisternal administration of 0.1, 1, or 10 μg of SB203580, a p38 MAPK inhibitor, also significantly decreased mechanical allodynia and p38 MAPK activation in the trigeminal ganglion-compressed group. These results suggest that activation of p38 MAPK in the microglia is an important step in the development of mechanical allodynia in rats with compression of the trigeminal ganglion and that the targeted blockade of microglial p38 MAPK pathway is a potentially important new treatment strategy for trigeminal neuralgia-like nociception.  相似文献   

15.
Patients with neuropathic pain frequently experience hypersensitivity to cold stimulation. However, the underlying mechanisms of this enhanced sensitivity to cold are not well understood. After partial nerve injury, the transient receptor potential ion channel TRPV1 increases in the intact small dorsal root ganglion (DRG) neurons in several neuropathic pain models. In the present study, we precisely examined the incidence of cold hyperalgesia and the changes of TRPA1 and TRPM8 expression in the L4 and L5 DRG following L5 spinal nerve ligation (SNL), because it is likely that the activation of two distinct populations of TRPA1- and TRPM8-expressing small neurons underlie the sensation of cold. We first confirmed that L5 SNL rats developed cold hyperalgesia for more than 14 days after surgery. In the nearby uninjured L4 DRG, TRPA1 mRNA expression increased in trkA-expressing small-to-medium diameter neurons from the 1st to 14th day after the L5 SNL. This upregulation corresponded well with the development and maintenance of nerve injury-induced cold hyperalgesia of the hind paw. In contrast, there was no change in the expression of the TRPM8 mRNA/protein in the L4 DRG throughout the 2-week time course of the experiment. In the injured L5 DRG, on the other hand, both TRPA1 and TRPM8 expression decreased over 2 weeks after ligation. Furthermore, intrathecal administration of TRPA1, but not TRPM8, antisense oligodeoxynucleotide suppressed the L5 SNL-induced cold hyperalgesia. Our data suggest that increased TRPA1 in uninjured primary afferent neurons may contribute to the exaggerated response to cold observed in the neuropathic pain model.  相似文献   

16.
We demonstrate the establishment of a novel animal model for trigeminal neuropathic pain following compression of the trigeminal nerve root, which produces prolonged nociceptive behavior and demyelination of the trigeminal nerve root. Under anesthesia, male Sprague-Dawley rats (200-230 g) were mounted onto a stereotaxic frame and injections of a 4% agar solution (10 μl) were given to achieve compression of the trigeminal nerve root. A sham operation was performed using identical procedures but without agar injections. Nociceptive behavior was examined 3 days before and then at 3, 7, 10, 14, 17, 21, 24, 30, 40, 55, and 70 days after the surgery. Compression of the trigeminal nerve root caused mechanical allodynia, hyperalgesia, and cold hypersensitivity. Mechanical allodynia was established within 3 days and recovered to preoperative levels on postoperative day (POD) 40. Mechanical hyperalgesia and cold hypersensitivity persisted until 55 days following compression. The compression produced focal demyelination in the trigeminal nerve root. In the medullary dorsal horn, phospho-p38 (p-p38) mitogen-activated protein kinase (MAPK) was found to be exclusively expressed in the microglia on POD 14. Furthermore, intraperitoneal administration of carbamazepine (50mg/kg) significantly blocked mechanical allodynia and reduced p38 MAPK activation induced by the compression of the trigeminal nerve root. Our findings suggest that prolonged nociceptive behavior following compression of the trigeminal nerve root may mimic trigeminal neuralgia in this animal model and that the activation of p38 MAPK in the microglia contributes to pain hypersensitivity in rats that have undergone compression of the trigeminal nerve root.  相似文献   

17.
Genetic knockout or knockdown of fat-mass and obesity-associated protein (FTO), a demethylase that participates in RNA N6-methyladenosine modification in injured dorsal root ganglion (DRG), has been demonstrated to alleviate nerve trauma-induced nociceptive hypersensitivities. However, these genetic strategies are still impractical in clinical neuropathic pain management. The present study sought to examine the effect of intrathecal administration of two specific FTO inhibitors, meclofenamic acid (MA) and N-CDPCB, on the development and maintenance of nociceptive hypersensitivities caused by unilateral L5 spinal nerve ligation (SNL) in rats. Intrathecal injection of either MA or N-CDPCB diminished dose-dependently the SNL-induced mechanical allodynia, heat hyperalgesia, cold hyperalgesia, and spontaneous ongoing nociceptive responses in both development and maintenance periods, without altering acute/basal pain and locomotor function. Intrathecal MA also reduced the SNL-induced neuronal and astrocyte hyperactivities in the ipsilateral L5 dorsal horn. Mechanistically, intrathecal injection of these two inhibitors blocked the SNL-induced increase in the histone methyltransferase G9a expression and rescued the G9a-controlled downregulation of mu opioid receptor and Kv1.2 proteins in the ipsilateral L5 DRG. These findings further indicate the role of DRG FTO in neuropathic pain and suggest potential clinical application of the FTO inhibitors for management of this disorder.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13311-021-01053-2.Key Words: FTO, Meclofenamic acid, N-CDPCB, Intrathecal injection, G9a, Mu opioid receptor, Kv1.2, Dorsal root ganglion, Neuropathic pain  相似文献   

18.
The cross talk between trigeminal ganglion (TG) neurons and satellite glial cells (SGCs) is crucial for the regulation of inflammatory orofacial pain. Substance P (SP) plays an important role by activating neurokinin (NK)‐I receptors in this cross talk. The activation of extracellular signal‐regulated kinase (ERK) 1/2, protein kinase A (PKA) and protein kinase C (PKC) in neurons and SGCs of peripheral ganglions by peripheral inflammation is associated with inflammatory hypersensitivity. This study tested the hypothesis that SP evoked SP‐NK‐I receptor positive feedback via the Renin–Angiotensin System/B‐Protein Kinase A‐Rapidly Accelerates Fibrosarcoma‐MEK‐Extracellular Signal‐Regulated Kinase (RAS/PKA‐RAF‐MEK‐ERK) pathway, which is involved in pain hypersensitivity. Inflammatory models were induced in vivo by injecting Complete Freund's adjuvant (CFA) into the whisker pad of rats. SP was administrated to SGCs in vitro for investigating, whether SP regulates the expression of NK‐I receptor in the SGC nucleus. The effects of RAS‐RAF‐MEK, PKA and PKC pathways in this process were measured by co‐incubating SGCs with respective Raf, PKA, PKC and MEK inhibitors in vitro and by pre‐injecting these inhibitors into the TG in vivo. SP significantly upregulated NK‐I receptor, p‐ERK1/2, Ras, B‐Raf, PKA and PKC in SGCs under inflammatory conditions. In addition, L703,606 (NK‐I receptor antagonist), U0126 (MEK inhibitor), Sorafenib (Raf inhibitor) and H892HCL (PKA inhibitor) but not chelerythrine chloride (PKC inhibitor) significantly decreased NK‐I mRNA and protein levels induced by SP. The allodynia‐related behavior evoked by CFA was inhibited by pre‐injection of L703,606, U0126, Sorafenib and H892HCL into the TG. Overall, SP upregulates NK‐I receptor in TG SGCs via PKA/RAS‐RAF‐MEK‐ERK pathway activation, contributing to a positive feedback of SP‐NK‐I receptor in inflammatory orofacial pain.  相似文献   

19.
Members of the miR‐183 family are unique in that they are highly abundant in sensory organs. In a recent study, significant downregulation was observed for miR‐96 and miR‐183 in the L5 dorsal root ganglion (DRG) 2 weeks after spinal nerve ligation (SNL). In this study, we focused on miR‐183, which is the most regulated member of the miR‐183 family, to look at the specific role on neuropathic pain. Persistent mechanical allodynia was induced with the L5 SNL model in 8‐week‐old male Sprague‐Dawley rats. Paw withdrawal thresholds in response to mechanical stimuli were assessed with Von Frey filaments. Expression of miR‐183 in the L5 DRG was assessed with quantitative real‐time polymerase chain reaction (qPCR) analysis. Lentivirions expressing miR‐183 were injected intrathecally into SNL rats. Changes in mechanical allodynia were assessed with Von Frey filaments. In addition, changes in the predicted target genes of miR‐183 were assessed with qPCR. L5 SNL produced marked mechanical allodynia in the ipsilateral hindpaws of adult rats, beginning at postoperative day 1 and continuing to day 14. L5 SNL caused significant downregulation of miR‐183 in adult DRG cells. Intrathecal administration of lentivirions expressing miR‐183 downregulated SNL‐induced increases in the expression of Nav1.3 and brain‐derived neurotrophic factor (BDNF), which correlated with the significant attenuation of SNL‐induced mechanical allodynia. Our results show that SNL‐induced mechanical allodynia is significantly correlated with the decreased expression of miR‐183 in DRG cells. Replacement of miR‐183 downregulates SNL‐induced increases in Nav1.3 and BDNF expression, and attenuates SNL‐induced mechanical allodynia.  相似文献   

20.
In somatic models of central sensitisation (CS) allodynia develops following changes to somatic A-beta fibres, allowing these afferents which normally only process innocuous sensations to encode pain. The aim of this study was to determine whether somatic allodynia induced by visceral sensitisation occurs via N-Methyl-D-Aspartate (NMDA) receptor mediated changes to the neurophysiological characteristics of somatic A-beta fibres. Twelve healthy subjects had oesophageal, chest wall and foot pain thresholds (PT) to electrical stimulation measured, and chest wall evoked potentials (CEP) recorded before and 30 minutes after distal oesophageal acidification on 2 separate visits. Intravenous ketamine (an NMDA receptor antagonist) or saline was given 30 minutes post acid with repeated oesophageal and chest wall PT measurements and CEP recordings. Distal oesophageal acidification reduced PT to electrical stimulation on the anterior chest wall (37 +/- 10 mA v 29 +/- 7 mA p = 0.01) and proximal oesophagus (46 +/- 10 mA v 33 +/- 11 mA p = 0.001) but not the foot (37 +/- 25 mA v 39 +/- 23 mA p = 0.12). The induction of chest wall somatic allodynia was accompanied by a reduction in the latency of the P1 (36 +/- 3 ms to 30 +/- 4 ms p = 0.016) and P2 (87 +/- 7 ms to v 76 +/- 7 ms p = 0.049) components of the CEP. NMDA receptor antagonism reversed both visceral and somatic pain hypersensitivity but did not affect CEP latencies. These data provide objective neurophysiological evidence that CS contributes to the development of somatic allodynia following visceral sensitisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号