首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diabetic cardiomyopathy is a major complication that significantly contributes to morbidity and mortality in diabetics with few therapies. Moreover, antidiabetic drugs reported inconsistent or even adverse cardiovascular effects, suggesting that it is important to exploit novel therapeutic targets against diabetic cardiomyopathy. Here, we observed that the nuclear melatonin receptor, the retinoic acid‐related orphan receptor‐α (RORα), was downregulated in diabetic hearts. By utilizing a mouse line with RORα disruption, we demonstrated that RORα deficiency led to significantly augmented diastolic dysfunction and cardiac remodeling induced by diabetes. Microscopic and molecular analyses further indicated that the detrimental effects of RORα deficiency were associated with aggravated myocardial apoptosis, autophagy dysfunction, and oxidative stress by disrupting antioxidant gene expression. By contrast, restoration of cardiac RORα levels in transgenic mice significantly improved cardiac functional and structural parameters at 8 weeks after diabetes induction. Consistent with genetic manipulation, pharmacological activation of RORα by melatonin and SR1078 (a synthetic agonist) showed beneficial effects against diabetic cardiomyopathy, while the RORα inhibitor SR3335 significantly exacerbated cardiac impairments in diabetic mice. Collectively, these findings suggest that cardiac‐targeted manipulation of nuclear melatonin receptor RORα may hold promise for delaying diabetic cardiomyopathy development.  相似文献   

2.
Melatonin, a circadian molecule secreted by the pineal gland, confers a protective role against cardiac hypertrophy induced by hyperthyroidism, chronic hypoxia, and isoproterenol. However, its role against pressure overload‐induced cardiac hypertrophy and the underlying mechanisms remains elusive. In this study, we investigated the pharmacological effects of melatonin on pathological cardiac hypertrophy induced by transverse aortic constriction (TAC). Male C57BL/6 mice underwent TAC or sham surgery at day 0 and were then treated with melatonin (20 mg/kg/day, via drinking water) for 4 or 8 weeks. The 8‐week survival rate following TAC surgery was significantly increased by melatonin. Melatonin treatment for 8 weeks markedly ameliorated cardiac hypertrophy. Compared with the TAC group, melatonin treatment for both 4 and 8 weeks reduced pulmonary congestion, upregulated the expression level of α‐myosin heavy chain, downregulated the expression level of β‐myosin heavy chain and atrial natriuretic peptide, and attenuated the degree of cardiac fibrosis. In addition, melatonin treatment slowed the deterioration of cardiac contractile function caused by pressure overload. These effects of melatonin were accompanied by a significant upregulation in the expression of peroxisome proliferator‐activated receptor‐gamma co‐activator‐1 beta (PGC‐1β) and the inhibition of oxidative stress. In vitro studies showed that melatonin also protects against angiotensin II‐induced cardiomyocyte hypertrophy and oxidative stress, which were largely abolished by knocking down the expression of PGC‐1β using small interfering RNA. In summary, our results demonstrate that melatonin protects against pathological cardiac hypertrophy induced by pressure overload through activating PGC‐1β.  相似文献   

3.
Accumulated pieces of evidence have proved the beneficial effects of melatonin on myocardial ischemia/reperfusion (MI/R) injury, and these effects were largely dependent on melatonin membrane receptor activation. In humans and other mammals, there are two types of melatonin receptors, including the melatonin receptor 1 (MT1, melatonin receptor 1a or MTNR1A) and melatonin receptor 1 (MT2, melatonin receptor 1b or MTNR1B) receptor subtypes. However, which receptor mediates melatonin‐conferred cardioprotection remains unclear. In this study, we employed both loss‐of‐function and gain‐of‐function approaches to reveal the answer. Mice (wild‐type; MT1 or MT2 silencing by in vivo minicircle vector; and those overexpressing MT1 or MT2 by in vivo AAV9 vector) were exposed to MI/R injury. Both MT1 and MT2 were present in wild‐type myocardium. MT2, but not MT1, was essentially upregulated after MI/R Melatonin administration significantly reduced myocardial injury and improved cardiac function after MI/R Mechanistically, melatonin treatment suppressed MI/R‐initiated myocardial oxidative stress and nitrative stress, alleviated endoplasmic reticulum stress and mitochondrial injury, and inhibited myocardial apoptosis. These beneficial actions of melatonin were absent in MT2‐silenced heart, but not the MT1 subtype. Furthermore, AAV9‐mediated cardiomyocyte‐specific overexpression of MT2, but not MT1, mitigated MI/R injury and improved cardiac dysfunction, which was accompanied by significant amelioration of oxidative stress, endoplasmic reticulum stress, and mitochondrial dysfunction. Mechanistically, MT2 protected primary cardiomyocytes against hypoxia/reoxygenation injury via MT2/Notch1/Hes1/RORα signaling. Our study presents the first direct evidence that the MT2 subtype, but not MT1, is a novel endogenous cardiac protective receptor against MI/R injury. Medications specifically targeting MT2 may hold promise in fighting ischemic heart disease.  相似文献   

4.
Muscle LIM protein (MLP) has been proposed to be a central player in the pathogenesis of heart muscle disease. In line with this notion, the homozygous loss of MLP results in cardiac hypertrophy and dilated cardiomyopathy. Moreover, MLP is induced in several models of cardiac hypertrophy such as aortic banding and myocardial infarction. We thus hypothesized that overexpression of MLP might change the hypertrophic response to cardiac stress. In order to answer the question whether MLP modulates cardiac hypertrophy in vivo, we generated a novel transgenic mouse model with cardiac-specific overexpression of MLP. Three independent transgenic lines did not show a pathological phenotype under baseline conditions. Specifically, contractile function and heart weight to body weight ratios at different ages were normal. Next, the transgenic animals were challenged with pressure overload due to aortic constriction. Surprisingly, transgenic mice developed cardiac hypertrophy to the same extent as their wild-type littermates. Moreover, neither contractile dysfunction nor pathological gene expression in response to pressure overload were differentially affected by MLP overexpression. Finally, in a milder in vivo model of hypertrophy induced by chronic infusion of angiotensin-II, cardiac mass and hypertrophic gene expression were again identical in MLP transgenic mice and controls. Taken together, we provide evidence that cardiac overexpression of MLP does not modulate the heart's response to various forms of pathological stress.  相似文献   

5.
Myocardial contractile dysfunction is associated with an increase in mitochondrial fission in patients with diabetes. However, whether mitochondrial fission directly promotes diabetes‐induced cardiac dysfunction is still unknown. Melatonin exerts a substantial influence on the regulation of mitochondrial fission/fusion. This study investigated whether melatonin protects against diabetes‐induced cardiac dysfunction via regulation of mitochondrial fission/fusion and explored its underlying mechanisms. Here, we show that melatonin prevented diabetes‐induced cardiac dysfunction by inhibiting dynamin‐related protein 1 (Drp1)‐mediated mitochondrial fission. Melatonin treatment decreased Drp1 expression, inhibited mitochondrial fragmentation, suppressed oxidative stress, reduced cardiomyocyte apoptosis, improved mitochondrial function and cardiac function in streptozotocin (STZ )‐induced diabetic mice, but not in SIRT 1?/? diabetic mice. In high glucose‐exposed H9c2 cells, melatonin treatment increased the expression of SIRT 1 and PGC ‐1α and inhibited Drp1‐mediated mitochondrial fission and mitochondria‐derived superoxide production. In contrast, SIRT 1 or PGC ‐1α siRNA knockdown blunted the inhibitory effects of melatonin on Drp1 expression and mitochondrial fission. These data indicated that melatonin exerted its cardioprotective effects by reducing Drp1‐mediated mitochondrial fission in a SIRT 1/PGC ‐1α‐dependent manner. Moreover, chromatin immunoprecipitation analysis revealed that PGC ‐1α directly regulated the expression of Drp1 by binding to its promoter. Inhibition of mitochondrial fission with Drp1 inhibitor mdivi‐1 suppressed oxidative stress, alleviated mitochondrial dysfunction and cardiac dysfunction in diabetic mice. These findings show that melatonin attenuates the development of diabetes‐induced cardiac dysfunction by preventing mitochondrial fission through SIRT 1‐PGC 1α pathway, which negatively regulates the expression of Drp1 directly. Inhibition of mitochondrial fission may be a potential target for delaying cardiac complications in patients with diabetes.  相似文献   

6.
Cardiac hypertrophy is a thickening of the heart muscle that results in enlargement of the ventricles, which is the primary response of the myocardium to stress or mechanical overload. Cardiac pathological and physiological hemodynamic overload causes enhanced protein synthesis, sarcomeric reorganization and density, and increased cardiomyocyte size, all culminating into structural remodeling of the heart. With clinical evidence demonstrating that sustained hypertrophy is a key risk factor in heart failure development, much effort is centered on the identification of signals and pathways leading to pathological hypertrophy for future rational drug design in heart failure therapy. A wide variety of studies indicate that individual microRNAs exhibit altered expression profiles under experimental and clinical conditions of cardiac hypertrophy and heart failure. Here we review the recent literature, illustrating how single microRNAs regulate cardiac hypertrophy by classifying them by their prohypertrophic or antihypertrophic properties and their specific effects on intracellular signaling cascades, ubiquitination processes, sarcomere composition and by promoting inter-cellular communication.  相似文献   

7.
Abstract: Previous research has shown that antioxidant (butylated hydroxyanisole) treatment ameliorates respiratory syncytial virus (RSV)‐induced disease and lung inflammation. Melatonin has been reported to exhibit a wide varieties of biological effects, including antioxidant and anti‐inflammation, and has no evident toxicity and side effect. But it is not known whether melatonin would modify RSV‐induced lung disease and oxidative stress. The present study was to establish the involvement of oxidative stress in the pathogenesis of RSV‐induced lung inflammation, and to investigate the protective effect of administration of melatonin in mice with RSV‐induced oxidative pulmonary injury for 4 days. Malondialdehyde (MDA), an end product of lipid peroxidation, and glutathione (GSH) and superoxide dismutase (SOD) and nitric oxide (NO) levels were evaluated in lung tissue homogenates by spectrophotometry. Hydroxyl radical (˙OH), one of the indicators of free radical formation, was also detected in lung homogenates by Fenton reaction. Tumor necrosis factor‐a (TNF‐a) concentrations in mouse serum were measured with ELISA assay. The results demonstrated that the mice intranasally inoculated with RSV resulted in oxidative stress changes by increasing NO, MDA and ˙OH levels, and decreasing GSH and SOD activities, whereas administration of melatonin significantly reversed all these effects. Furthermore, melatonin inhibited production of proinflammatory cytokines such as TNF‐a in serum of RSV‐infected mice. These results suggest that melatonin ameliorates RSV‐induced lung inflammatory injury in mice via inhibition of oxidative stress and proinflammatory cytokine production and may be as a novel therapeutic agent in virus‐induced pulmonary infection.  相似文献   

8.
9.
Oxidative stress is defined as excessive production of reactive oxygen species (ROS) in the presence of diminished anti‐oxidant substances. Increased oxidative stress could be one of the common pathogenic factors of diabetic complications. However, the mechanisms by which hyperglycemia increases oxidative stress are not fully understood. In this review, we focus on the impact of mitochondrial derived ROS (mtROS) on diabetic complications and suggest potential therapeutic approaches to suppress mtROS. It has been shown that hyperglycemia increases ROS production from mitochondrial electron transport chain and normalizing mitochondrial ROS ameliorates major pathways of hyperglycemic damage, such as activation of polyol pathway, activation of PKC and accumulation of advanced glycation end‐products (AGE). Additionally, in subjects with type 2 diabetes, we found a positive correlation between HbA1c and urinary excretion of 8‐hydroxydeoxyguanosine (8‐OHdG), which reflects mitochondrial oxidative damage, and further reported that 8‐OHdG was elevated in subjects with diabetic micro‐ and macro‐ vascular complications. We recently created vascular endothelial cell‐specific manganese superoxide dismutase (MnSOD) transgenic mice, and clarified that overexpression of MnSOD in endothelium could prevent diabetic retinopathy in vivo. Furthermore, we found that metformin and pioglitazone, both of which have the ability to reduce diabetic vascular complications, could ameliorate hyperglycemia‐induced mtROS production by the induction of PPARγ coactivator‐1α (PGC‐1α) and MnSOD and/or activation of adenosine monophosphate (AMP)‐activated protein kinase (AMPK). We also found that metformin and pioglitazone promote mitochondrial biogenesis through the same AMPK–PGC‐1α pathway. Taking these results, mtROS could be the key initiator of and a therapeutic target for diabetic vascular complications. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2010.00013.x, 2010)  相似文献   

10.
Diverse forms of injury and stress evoke a hypertrophic growth response in adult cardiac myocytes, which is characterized by an increase in cell size, enhanced protein synthesis, assembly of sarcomeres, and reactivation of fetal genes, often culminating in heart failure and sudden death. Given the emerging roles of microRNAs (miRNAs) in modulation of cellular phenotypes, we searched for miRNAs that were regulated during cardiac hypertrophy and heart failure. We describe >12 miRNAs that are up- or down-regulated in cardiac tissue from mice in response to transverse aortic constriction or expression of activated calcineurin, stimuli that induce pathological cardiac remodeling. Many of these miRNAs were similarly regulated in failing human hearts. Forced overexpression of stress-inducible miRNAs was sufficient to induce hypertrophy in cultured cardiomyocytes. Similarly, cardiac overexpression of miR-195, which was up-regulated during cardiac hypertrophy, resulted in pathological cardiac growth and heart failure in transgenic mice. These findings reveal an important role for specific miRNAs in the control of hypertrophic growth and chamber remodeling of the heart in response to pathological signaling and point to miRNAs as potential therapeutic targets in heart disease.  相似文献   

11.
Abstract: Augmentation of gastric mucosal cell apoptosis due to development of oxidative stress is one of the main pathogenic events in the development of nonsteroidal anti‐inflammatory drug (NSAID)‐induced gastropathy. Identification of a nontoxic, anti‐apoptotic molecule is warranted for therapy against NSAID‐induced gastropathy. The objective of the present study was to define the mechanism of the anti‐apoptotic effect of melatonin, a nontoxic molecule which scavenges reactive oxygen species. Using an array of experimental approaches, we have shown that melatonin prevents the development of mitochondrial oxidative stress and activation of mitochondrial pathway of apoptosis induced by indomethacin (a NSAID) in the gastric mucosa. Melatonin inhibits the important steps of indomethacin‐induced activation of mitochondrial pathway of apoptosis such as upregulation of the expression of Bax and Bak, and the downregulation of Bcl‐2 and BclxL. Melatonin also prevents indomethacin‐induced mitochondrial translocation of Bax and prevents the collapse of mitochondrial membrane potential. Moreover, melatonin reduces indomethacin‐mediated activation of caspase‐9 and caspase‐3 by blocking the release of cytochrome c and finally rescues gastric mucosal cells from indomethacin‐induced apoptosis as measured by the TUNEL assay. Histologic studies of gastric mucosa further document that melatonin almost completely protects against gastric damage induced by indomethacin. Thus, melatonin has significant anti‐apoptotic effects to protect gastric mucosa from NSAID‐induced apoptosis and gastropathy, which makes its use as potential therapy against gastric damage during NSAID treatment.  相似文献   

12.
The NADPH oxidases (Nox) are transmembrane proteins dedicated to producing reactive oxygen species (ROS), including superoxide and hydrogen peroxide, by transferring electrons from NAD(P)H to molecular oxygen. Nox2 and Nox4 are expressed in the heart and play an important role in mediating oxidative stress at baseline and under stress. Nox2 is primarily localized on the plasma membrane, whereas Nox4 is found primarily on intracellular membranes, on mitochondria, the endoplasmic reticulum or the nucleus. Although Nox2 plays an important role in mediating angiotensin II-induced cardiac hypertrophy, Nox4 mediates cardiac hypertrophy and heart failure in response to pressure overload. Expression of Nox4 is upregulated by hypertrophic stimuli, and Nox4 in mitochondria plays an essential role in mediating oxidative stress during pressure overload-induced cardiac hypertrophy. Upregulation of Nox4 induces oxidation of mitochondrial proteins, including aconitase, thereby causing mitochondrial dysfunction and myocardial cell death. On the other hand, Noxs also appear to mediate physiological functions, such as erythropoiesis and angiogenesis. In this review, we discuss the role of Noxs in mediating oxidative stress and both pathological and physiological functions of Noxs in the heart.  相似文献   

13.
14.
15.
Cardiac hypertrophy is the heart's response to a variety of extrinsic and intrinsic stimuli that impose increased biomechanical stress. Traditionally, it has been considered a beneficial mechanism; however, sustained hypertrophy has been associated with a significant increase in the risk of cardiovascular disease and mortality. Delineating intracellular signaling pathways involved in the different aspects of cardiac hypertrophy will permit future improvements in potential targets for therapeutic intervention. Generally, there are two types of cardiac hypertrophies, adaptive hypertrophy, including eutrophy (normal growth) and physiological hypertrophy (growth induced by physical conditioning), and maladaptive hypertrophy, including pathologic or reactive hypertrophy (growth induced by pathologic stimuli) and hypertrophic growth caused by genetic mutations affecting sarcomeric or cytoskeletal proteins. Accumulating observations from animal models and human patients have identified a number of intracellular signaling pathways that characterized as important transducers of the hypertrophic response, including calcineurin/nuclear factor of activated T- cells, phosphoinositide 3-kinases/Akt (PI3Ks/Akt) , G protein-coupled receptors, small G proteins, MAPK, PKCs, Gpl30/STAT3, Na /H exchanger, peroxisome proliferator-activated receptors, myocyte enhancer factor 2/histone deacetylases, and many others. Furthermore, recent evidence suggests that adaptive cardiac hypertrophy is regulated in large part by the growth hormone/insulin-like growth factors axis via signaling through the PI3K/Akt pathway. In contrast, pathological or reactive hypertrophy is triggered by autocrine and paracrine neurohormonal factors released during biomechanical stress that signal through the Gq/phosphorlipase C pathway, leading to an increase in cytosolic calcium and activation of PKC.  相似文献   

16.
The aim of the present research was to study the effect of sodium butyrate (SB) on partial abdominal aorta constriction (PAAC)-induced cardiac hypertrophy and determine its mechanism of action. Healthy Wistar rats were exposed to PAAC for eight weeks. After eight weeks, we carried out hypertrophic and hemodynamic evaluation and measured oxidative stress parameters and mitochondrial DNA concentration. PAAC control animals exhibited cardiac hypertrophy, decreased hemodynamic functions and oxidative stress. Treatment with SB reduced hypertrophic indices, LV wall thickness, LV collagen levels, cardiomyocyte diameter, serum lipid levels and serum cardiac biomarkers. Treatment with SB also improved hemodynamic functions, prevented oxidative stress and increased mitochondrial DNA concentration. Improvement in hypertrophy due to HDAC inhibition was further confirmed by HDAC mRNA expression studies which revealed that SB decreases expression of prohypertrophic HDAC, i.e., HDAC2, without altering the expression of anti-hypertrophic HDAC5. Sodium butyrate produces beneficial effect on cardiac hypertrophy as is evident, specifically from reduction in hypertrophic parameters including collagen levels, improvement in mitochondrial DNA concentration and preservation of LV systolic and diastolic dysfunction. This beneficial effect of sodium butyrate is mediated through downregulation of class I HDACs, specifically HDAC2 without any effect on class II HDAC, i.e., HDAC5. Thus, selective class I HDAC inhibition is required for controlling cardiac hypertrophy. Newer HDAC inhibitors which are class I inhibitor and class II promoter can be designed to obtain a ‘pan’ or ‘dual’ natural HDAC ‘regulators.’  相似文献   

17.
Hypoxia is a crucial factor in tumor aggressiveness and resistance to therapy, especially in glioblastoma. Our previous results have shown that melatonin exerts antimigratory and anti‐invasive action in glioblastoma cells under normoxia. However, the effect of melatonin on migration and invasion of glioblastoma cells under hypoxic condition remains poorly understood. Here, we show that melatonin strongly reduced hypoxia‐mediated invasion and migration of U251 and U87 glioblastoma cells. In addition, we found that melatonin significantly blocked HIF‐1α protein expression and suppressed the expression of downstream target genes, matrix metalloproteinase 2 (MMP‐2) and vascular endothelial growth factor (VEGF). Furthermore, melatonin destabilized hypoxia‐induced HIF‐1α protein via its antioxidant activity against ROS produced by glioblastoma cells in response to hypoxia. Along with this, HIF‐1α silencing by small interfering RNA markedly inhibited glioblastoma cell migration and invasion, and this appeared to be associated with MMP‐2 and VEGF under hypoxia. Taken together, our findings suggest that melatonin suppresses hypoxia‐induced glioblastoma cell migration and invasion via inhibition of HIF‐1α. Considering the fact that overexpression of the HIF‐1α protein is often detected in glioblastoma multiforme, melatonin may prove to be a potent therapeutic agent for this tumor.  相似文献   

18.
Fine particulate matter (PM2.5) exposure is correlated with the risk of developing cardiac fibrosis. Melatonin is a major secretory product of the pineal gland that has been reported to prevent fibrosis. However, whether melatonin affects the adverse health effects of PM2.5 exposure has not been investigated. Thus, this study was aimed to investigate the protective effect of melatonin against PM2.5‐accelerated cardiac fibrosis. The echocardiography revealed that PM2.5 had impaired both systolic and diastolic cardiac function in ApoE?/? mice. Histopathological analysis demonstrated that PM2.5 induced cardiomyocyte hypertrophy and fibrosis, particularly perivascular fibrosis, while the melatonin administration was effective in alleviating PM2.5‐induced cardiac dysfunction and fibrosis in mice. Results of electron microscopy and confocal scanning laser microscope confirmed that melatonin had restorative effects against impaired mitochondrial ultrastructure and augmented mitochondrial ROS generation in PM2.5‐treated group. Further investigation revealed melatonin administration could significantly reverse the PM2.5‐induced phenotypic modulation of cardiac fibroblasts into myofibroblasts. For the first time, our study found that melatonin effectively alleviates PM2.5‐induced cardiac dysfunction and fibrosis via inhibiting mitochondrial oxidative injury and regulating SIRT3‐mediated SOD2 deacetylation. Our findings indicate that melatonin could be a therapy medicine for prevention and treatment of air pollution‐associated cardiac diseases.  相似文献   

19.
Circadian rhythm disruption or decrease in levels of circadian hormones such as melatonin increases ischemic heart disease risk. The nuclear melatonin receptors RORs are pivotally involved in circadian rhythm regulation and melatonin effects mediation. However, the functional roles of RORs in the heart have never been investigated and were therefore the subject of this study on myocardial ischemia/reperfusion (MI/R) injury pathogenesis. RORα and RORγ subtypes were detected in the adult mouse heart, and RORα but not RORγ was downregulated after MI/R. To determine the pathological consequence of MI/R‐induced reduction of RORα, we subjected RORα‐deficient staggerer mice and wild‐type (WT) littermates to MI/R injury, resulting in significantly increased myocardial infarct size, myocardial apoptosis and exacerbated contractile dysfunction in the former. Mechanistically, RORα deficiency promoted MI/R‐induced endoplasmic reticulum stress, mitochondrial impairments, and autophagy dysfunction. Moreover, RORα deficiency augmented MI/R‐induced oxidative/nitrative stress. Given the emerging evidence of RORα as an essential melatonin effects mediator, we further investigated the RORα roles in melatonin‐exerted cardioprotection, in particular against MI/R injury, which was significantly attenuated in RORα‐deficient mice, but negligibly affected by cardiac‐specific silencing of RORγ. Finally, to determine cell type‐specific effects of RORα, we generated mice with cardiomyocyte‐specific RORα overexpression and they were less vulnerable to MI/R injury. In summary, our study provides the first direct evidence that the nuclear melatonin receptor RORα is a novel endogenous protective receptor against MI/R injury and an important mediator of melatonin‐exerted cardioprotection; melatonin‐RORα axis signaling thus appears important in protection against ischemic heart injury.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号