首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 208 毫秒
1.
目的:设计一种基于视觉诱发电位的实时脑机接口,用于控制短消息发送。方法:实时脑机接口系统由视觉刺激器、脑电采集电路、FPGA开发板、通讯模块组成。脑机接口界面包括短消息发送的目标选项和内容选项界面,受试者每次实验注视刺激界面中的一个模块,通过检测视觉诱发脑电来确定受试者做出的选择。利用基于FPGA的VGA视觉刺激器为受试者提供视觉刺激,采集脑电信号并在FPGA平台上对其进行在线的实时分析处理。选用小波分解提取视觉诱发电位特征向量,输入BP神经网络进行模式识别,产生脑机接口控制信号,其中,小波分解和BP神经网络两部分由NIOS II实现。脑机接口控制命令用于控制TC35无线模块发送短消息。结果:通过对五名受试者做实验,识别准确率最高可以达到100%,脑机接口系统能有效控制短消息的发送。采用小波滤波、BP神经网络识别的算法优于时域波形匹配识别法。结论:实验表明本文提出的实现脑机接口短消息发送系统的方法具有可行性。  相似文献   

2.
目的设计一种新型的植入式胃肠道刺激系统,不仅具有刺激功能,还具有肠电和压力检测功能,可用于检测胃肠道刺激的效果,同时增加无线能量供给,以实现刺激器的长期植入。方法系统由体内刺激模块、体外控制模块及无线能量传输模块组成。体外控制模块通过无线射频将控制信号传输到体内刺激模块,体内刺激模块的能量由体外能量发射装置通过电磁耦合进行供给。通过生物反馈控制检测不同刺激参数对胃肠道收缩活动的作用效果,实时调整刺激参数,输出需要的刺激脉冲。以模拟心电信号模拟肠电信号,进行了相关的体外实验。结果在体外实验中,系统可有效检测到2—20次/min的模拟心电信号,并实现实时刺激参数修改输出不同的刺激脉冲。该系统实现了电流检测功能,监测作用部分的胃肠电阻。经皮无线能量在两级线圈轴向距离为22mm时的接收充电稳定功率最大为0.93W,体内锂离子的充电电流为180~240mA。结论系统可检测到最大变化范围的模拟肠电信号。验证电流的作用效应为后续的恒流刺激模式提供参考。该系统的无线充电功能可满足植入式刺激器长期植入的能量需求。  相似文献   

3.
为了治疗药物难治性癫痫,提出一种无线闭环迷走神经刺激器及系统,包括头戴式头皮脑电记录器、迷走神经刺激器、电磁耦合能量发射器和控制应用App,设计一种可以分离局部场电位和动作电位的生物信号前置放大器,一种刺激脉冲参数可调的迷走神经刺激器,一种电磁耦合能量发射器以及一个控制应用App。使用海岸线参数检测算法判定癫痫脑电信号的产生。测试结果表明,生物信号前置放大器对局部场电位和动作电位的放大增益分别为40和60 dB。迷走神经刺激器接收到来自控制应用App的刺激参数后,可以产生对应参数的双极性刺激脉冲。当发射器发射功率为30 dBm,发射线圈和接收线圈距离2 cm时,电磁耦合能量传输效率最大为15.4%。海岸线参数算法的正检率为88%。  相似文献   

4.
为了给鲤鱼机器人脑电极准确植入进行定位导航,本研究拟建立脑结构及脑电极三维立体模型。借助脑立体定位仪将钨电极植入鲤鱼小脑,通过离水电刺激实验和水下控制实验发现脑运动区并获取其三维坐标值,应用3.0 T磁共振成像仪对颅脑及电极成像,应用3D-DOCTOR和Mimics软件进行三维重建。结果显示,所发现的脑运动区及坐标值是准确的,构建的脑组织及脑电极三维重建图再现了脑立体结构,可观察到脑电极与脑组织、脑组织与颅骨表面的相对空间位置关系;通过构建的脑组织三维重建综合显示图,可观察到三维重建的脑组织在磁共振图像中的解剖位置,以及脑组织与颅骨表面的相对空间位置关系。本研究所构建的三维重建模型可为脑电极植入提供定位导航工具。  相似文献   

5.
肠道生物机器人中驱动装置的刺激控制系统研究   总被引:1,自引:0,他引:1  
针对目前肠道诊疗设备的驱动问题,引入一种全新的肠道诊疗没备一肠道生物机器人.利用生物体作为驱动装置,携带肠道诊疗装置进入肠道内,通过体外的控制中心遥控生物体的运动行为,实现诊疗装置在肠道内主动前进、后退和定点泊位.选取黄鳝作为肠道生物机器人的生物体,并在了解其运动控制机理的基础上,设计出刺激控制系统.该系统由刺激电极和刺激器两部分组成,其刺激电极为表面式刺激电极和植入式刺激电极;其刺激器由LabVIEW软件和数据采集卡构成.采用该系统进行体外刺激控制实验,初步获得控制黄鳝前进的方法,证实该系统的可行性.  相似文献   

6.
为解决水生动物机器人因植入脑电极而产生的脑组织损伤、出血、感染和水肿等问题,本文提出了一种用于鲤鱼机器人的光刺激装置及光控实验方法。该装置是根据鲤鱼颅骨形状用万能板切割而成"王"字型结构,可为光刺激源提供A、B、C三组搭载桥平台,每组搭载桥两端各焊接一个跳线板,将发光二极管(LED)作为光刺激源插入跳线板中,将跳线板所有负极通过导线连接到控制台,LED灯根据波长需要可以更换,还可选择多种组合光刺激方式。将该装置搭载于鲤鱼头部,将鲤鱼机器人置于水迷宫中,观察应用光控方法在暗光下控制鲤鱼机器人(n=10)前进及转向等运动。结果显示,三组红光光控实验成功率在53%~87%,三组蓝光光控实验成功率在50%~80%。研究表明该装置与方法具有可行性。  相似文献   

7.
大鼠遥控导航及其行为训练系统的研究   总被引:1,自引:0,他引:1  
本研究开发了一套大鼠遥控导航及行为训练系统,通过无线微刺激器刺激大鼠特定脑区,实现对动物运动行为的控制。系统的主要部分有:集成的PC机控制程序(包括通讯、参数设置和数据文件管理等功能)、采用蓝牙模块制作的发射器和接收器、基于C8051微处理器控制的刺激器、无线摄像系统,用于压杆实验的操作箱和用于行为训练的八臂迷宫。刺激器有恒压或恒流两种工作模式,具有幅值可调的特性,可以方便地设置刺激参数以适应不同的训练目的。系统经过了多种行为学实验的测试:监视和记录大鼠在操作箱的压杆过程、控制大鼠走八臂迷宫、以及遥控引导大鼠按三维障碍路线行走。测试结果表明该系统工作稳定,产生的刺激信号可以有效地控制大鼠不同的转向行为。此外,对大鼠的训练结果表明作用于大鼠体感皮层桶状区(Barrel Field,BF)的刺激可给予大鼠"虚拟的"提示,该提示刺激与内侧前脑束的奖赏刺激联合作用可以训练并引导大鼠完成不同的转向动作。  相似文献   

8.
为解决鲤鱼脑组织坐标准确定位问题,本文提出一种将鲤鱼脑组织磁共振成像坐标转换为应用脑立体定位仪进行电极植入所需坐标的方法。本研究应用3.0T磁共振成像仪对鲤鱼颅脑成像,自主建立颅脑三维立体定位坐标系、颅骨表面辅助三维坐标系和脑组织内部辅助三维坐标系,经两次坐标转换,将脑电极植入位点磁共振图像坐标转换到三维立体定位坐标系中以引导电极植入。实验分A、B两组,A组为磁共振成像仪结合脑立体定位仪组,B组为脑图谱结合脑立体定位仪组,每组鲤鱼20尾(n=20),分别应用两种方法将电极植入小脑运动区。进行鲤鱼机器人水下实验检验,结果表明A组和B组植入电极准确度分别为90%和60%,A组成功率明显高于B组(P <0.05)。故本文的新方法能够准确定位鲤鱼脑组织的坐标。  相似文献   

9.
黄英  魏静容 《局解手术学杂志》2002,11(4):326-326,328
一、电刺激的种类 电刺激可分为三类:①功能性电刺激:指借电刺激恢复人体的某些收缩功能,如心脏起搏器,步态矫正器,瘫痪肢体刺激器等。1997年美国FDA批准了一种叫“自由臂”的手臂刺激器,将刺激电极植入瘫痪的手臂中,利用异侧肩部传感器控制臂和手指运动。又如美国研制一种“VOCARE”刺激器,将电极植入在骶骨下的神经节,可使脊柱损伤后大、小便失禁患者  相似文献   

10.
脑-机接口(BCI)系统是通过脑电(EEG)信号实现人和计算机等设备之间的交流和控制的系统。本文阐述了基于BCI技术的无线智能家居系统的工作原理,利用单片机、LED灯组成视觉刺激器诱发得到稳态视觉诱发电位(SSVEP),再利用在LabVIEW平台上的功率谱变换方法实时处理不同频率刺激下产生的EEG信号,将其转化为不同的指令,由无线射频设备收发控制命令,实现家居设备的实时智能控制。实验结果表明,10名受试者的正确率均达到100%,单个设备的平均控制时间为4s,实现了家居设备的智能控制。  相似文献   

11.
This paper reports a miniature, low power, two-channel, bidirectional wireless communication system that can be used in the first generation of micro gastrointestinal (GI) robots. The system consists of a miniature RF transceiver embedded in the GI robot and a control station outside the body. ISM band radio frequency (approx. 433 MHz) was used to achieve half duplex communication between the GI robot and the control station. The Frequency Shift Keying (FSK) modulation scheme was adopted to ensure a reliable and high-speed digital RF link. Animal tests have been carried out to prove the performance of the communication system.  相似文献   

12.
目的:基于智能终端的移动医疗技术已成为平时医疗健康监护研究的一个热点。相对于传统的医疗设备系统,智能终端的移动医疗技术是一种低生理、心理负荷技术,智能终端的移动医疗系统具有体积小、成本低、功耗小、携带方便等突出特点。为了保证人体生理参数采集系统中采集到的生理参数可靠有效的传输到智能终端,本文设计了生理参数采集系统中数据无线传输模块。方法:该无线通信模块利用蓝牙传输方式,主要包括微处理器外围电路及蓝牙芯片外围电路设计。同时,考虑到性能和数据吞吐率水平以及传输协议执行时的软件开销。所以人体生理信号采集系统中的蓝牙模块的主机控制接口采用的是UART接口。结果:同时为了验证该模块的功能,利用该模块对FLUKE多参数模拟仪MPS450模拟的人体呼吸信号进行了发送传输,并且利用智能终端对发送的数据进行接收。结论:经试验测试表明,整个电路设计合理、工作正常,能准确发送人体生理参数采集系统中采集到的人体生理参数数据。所以该无线通信模块可以满足基于智能终端人体生理参数采集系统的需求。  相似文献   

13.
A prototype of wireless surface electrical stimulation system combined with the fuzzy FES controller was developed for rehabilitation training with functional electrical stimulation (FES). The developed FES system has three features for rehabilitation training: small-sized electrical stimulator for surface FES, wireless connection between controller and stimulators, and between controller and sensors, and the fuzzy FES controller based on the cycle-to-cycle control for repetitive training. The developed stimulator could generate monophasic or biphasic high voltage stimulus pulse and could output stimulation pulses continuously more than 20 hours with 4 AAA batteries. The developed system was examined with neurologically intact subjects and hemiplegic subjects in knee joint control. The maximum knee joint angle was controlled by regulating burst duration of stimulation pulses by the fuzzy controller. In the results of two experiments of knee extension angle control and knee flexion and extension angle control, the maximum angles reached their targets within small number of cycles and were controlled stably in the stimulation cycles after reaching the target. The fuzzy FES controller based on the cycle-to-cycle control worked effectively to reach the target angle and to compensate difference in muscle properties between subjects. The developed wireless surface FES system would be practical in clinical applications of repetitive execution of similar movements of the limbs for motor rehabilitation with FES.  相似文献   

14.
The biomedical applications of wireless robots are an active area of study. In addition to moving to a target lesion, wireless locomotive robots can deliver a therapeutic drug for a specific disease. Thus, they hold great potential as therapeutic devices in blood vessel diseases, such as thrombi and occlusions, and in other diseases, such as cancer and inflammation. During a percutaneous coronary intervention (PCI), surgeons wear a heavy shielding cloth. However, they cannot escape severe radiation exposure owing to unstable shielding. They may also suffer from joint pains because of the weight of the shielding cloth. In addition, the catheters in PCIs are controlled by the surgeon's hand. Thus, they lack steering ability. A new intravascular therapeutic system is needed to address these problems in conventional PCIs. We developed an intravascular therapeutic microrobot system (ITMS) using an electromagnetic actuation (EMA) system with bi-plane X-ray devices that can remotely control a robot in blood vessels. Using this proposed ITMS, we demonstrated the locomotion of the robot in abdominal and iliac arteries of a live pig by the master-slave method. After producing an arterial thromboembolism in a live pig in a partial iliac artery, the robot moved to the target lesion and penetrated by specific motions (twisting and hammering) of the robot using the proposed ITMS. The results reveal that the proposed ITMS can realize stable locomotion (alignment and propulsion) of a robot in abdominal and iliac arteries of a live pig. This can be considered the first preclinical trial of the treatment of an artificial arterial thromboembolism by penetration of a blood clot.  相似文献   

15.
Modular transcutaneous functional electrical stimulation system   总被引:2,自引:0,他引:2  
A new multipurpose programmable transcutaneous electric stimulator, Compex Motion, was developed to allow users to design various custom-made neuroprostheses, neurological assessment devices, muscle exercise systems, and experimental setups for physiological studies. Compex Motion can generate any arbitrary stimulation sequence, which can be controlled or regulated in real-time using any external sensor or laboratory equipment. Compex Motion originated from the existing Compex 2 electric stimulator, manufactured by a Swiss based company, Compex SA. The Compex Motion stimulator represents a further evolution and expansion of the ETHZ-ParaCare functional electrical stimulation system. This stimulator provides all the advanced functional electrical stimulation (FES) application and control features and can be easily incorporated into any standard rehabilitation program. Compex Motion has successfully been applied as a neuroprosthesis for walking, reaching and grasping in more than 100 stroke and spinal cord injured patients. This system has also been used to strengthen muscles and to investigate muscle properties in able-bodied subjects. Compex Motion is a multipurpose FES system specially designed to promote sharing and exchanging of stimulation protocols, sensors, and user interfaces. To the best of our knowledge an FES system that has similar capabilities does not exist yet.  相似文献   

16.
The existing endoscope brings too much discomfort to patients because its slim and rigid rod is difficult to pass through α, γ loop of the human intestine. A robotic endoscope, as a novel solution, is expected to replace the current endoscope in clinic. A microrobotic endoscope based on wireless power supply was developed in this paper. This robot is mainly composed of a locomotion mechanism, a wireless power supply subsystem, and a communication subsystem. The locomotion mechanism is composed of three liner-driving cells connected with each other through a two-freedom universal joint. The wireless power supply subsystem is composed of a resonance transmit coil to transmit an alternating magnetic field, and a secondary coil to receive the power. Wireless communication system could transmit the image to the monitor, or send the control commands to the robot. The whole robot was packaged in the waterproof bellows. Activating the three driving cells under some rhythm, the robot could creep forward or backward as a worm. A mathematic model is built to express the energy coupling efficiency. Some experiments are performed to test the efficiency and the capability of energy transferring. The results show the wireless energy supply has enough power capacity. The velocity and the navigation ability in a pig intestine were measured in in vitro experiments. The results demonstrated this robot can navigate the intestine easily. In general, the wireless power supply and the wireless communication remove the need of a connecting wire and improve the motion flexibility. Meanwhile, the presented locomotion mechanism and principle have a high reliability and a good adaptability to the in vitro intestine. This research has laid a good foundation for the real application of the robotic endoscope in the future.  相似文献   

17.
目的测试自行研制的植入式结肠起搏点电刺激系统对增加盲肠运动的效果。方法植入式结肠电刺激系统由植入式体内刺激器、便携式体外控制器和计算机参数设置分析软件组成。刺激参数及指令经体外控制器,以无线通信模式发送至体内刺激器;表征结肠收缩活动的压力信息由结肠腔内压力感受器采集后通过无线通信模式发送至体外控制器存储卡储存。选择46kg健康白猪1只,麻醉后开腹,将体内刺激器植入右侧腹股沟皮下,刺激电极穿过腹壁植入盲肠壁内固定,刺激参数选择电压为10、15、20 V,双脉冲频率为10、40、120 Hz,脉冲时间为0.5、1.0、3.0、5.0 ms,每次刺激前后连续观察记录5 min。检测完成后植入器固定,关腹后饲养1个月再次手术取出植入器。结果植入式结肠起搏点电刺激系统工作正常,在上述的电压、脉冲频率和双脉冲宽度的任意组合参数刺激下,发现电压和频率相同时脉宽越长,肠壁收缩活动的幅度越大;脉宽和电压相同时脉冲频率越高,肠壁收缩活动的潜伏期越短;频率和脉宽相同时电压越大,肠壁收缩活动的潜伏期越短,收缩幅度越大。在脉宽5.0ms、频率120Hz、电压15V的脉冲电刺激下,盲肠处于强直收缩状态。体内刺激器植入1个月,无感染及异物反应,取出时见植入物周围有少许包裹性积液。结论自行研制的电刺激系统初步适合进行结肠电刺激动物实验,选择合适刺激参数的结肠起搏点电刺激可明显增加结肠收缩运动,为进一步探索结肠电刺激治疗慢传输性便秘提供了研究基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号