首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
目的:在调强放射治疗“end to end”质量核查中,探讨应用针尖电离室对调强放射治疗小野照射进行绝对剂量测量的研究。方法:选择3省20家医院,将放有热释光剂量计TLD(距模体表面距离约7.5 cm)和胶片的国际原子能机构(IAEA)模体进行CT扫描,图像导入放射治疗计划系统(TPS)中,设计治疗计划,进行7野等中心调强照射,MLC照射野大小>2 cm×2 cm且<4 cm×4 cm。同时针尖电离室(0.015 cc)放在固体水模体距模体表面7.5 cm下进行点剂量绝对剂量验证:(1)将治疗计划中射野角度归零平移到固体水模体中进行剂量验证;(2)治疗计划射野角度不归零时为实际治疗照射方向,平移到固体水模体中进行绝对剂量验证。结果:在调强放射治疗多叶光栅小野照射的固体水模体中,用针尖电离室测量的绝对剂量与TPS计算得到的绝对剂量比较,7野照射方向归为零度时,比较偏差<5%;实际照射方向时,比较偏差<5%。验证后的计划,在IAEA模体上进行实际7野调强治疗,模体中的高剂量靶区胶片(Gafchromic EBT3 film)绝对剂量通过率均≥90%(Gamma分析:3%, 3 mm),TLD偏差<7%。均符合IAEA提出的标准。结论:在调强放射治疗多叶光栅小野照射时,可以应用针尖电离室作为绝对剂量验证的一个方法。  相似文献   

2.
放射治疗的根本目标在于给肿瘤区域足够的精确治疗剂量,而使周围正常组织和器官受照射量最小。提高肿瘤的局部控制率,减少正常组织的放射并发症,而实现这个目标的关键是取决于治疗剂量的精确实施和脑剂量分布的优劣。本工作根据临床常用的三种治疗方案,用TLD剂量元件和剂量胶片,利用人体等效非均匀头模,检验治疗计划系统剂量分布理论计算结果  相似文献   

3.
目的:探讨调强适形放射治疗的质量保证方法。方法:用CMS放射治疗计划系统设计调强适形放射治疗计划。采用CT模拟的方法验证射野等中心位置,比较各照射野实际胶片调强图与治疗计划系统得到的相应照射野的测强图的一致性,采用多通道剂量仪验证多点绝对剂量。结果:射野等中心位置误差在3mm以内。各射束垂直方向测得的调强图与计划系统计算的调强图一致。等中心点实测剂量与计划剂量的误差在3%以内,其余偏离点的实测剂量与计划剂最误差在5%以内。近期疗效为完全缓解(CR)58.8%(10/17),部分缓解(PR)17.6%(3/17),无变化(NR)23.5%(4/17),总有效率(CR+PR)为76.5%(13/17),所有17例患者均能耐受放射治疗,按计划完成调强透形放射治疗。结论:上述质量保证措施切实可行。调强适形放射治疗对恶性肿瘤有较好的近期疗效。  相似文献   

4.
目的:对接受调强放射治疗的鼻咽癌病人进行治疗前的剂量验证.材料和方法:利用电离室,胶片和验证模体对39个接受调强放射治疗的鼻咽癌患者,在治疗开始前进行绝对剂量和相对剂量验证.绝对剂量验证主要在两个位置进行:一个在等中心位置,另一个在离等中心4cm靠进腮腺的位置.相对剂量主要用体模对单野和整个计划的剂量分布进行验证.将得到的剂量分布利用分析软件与计划中的剂量分布进行分析比较.利用剂量偏差(dose difference)、吻合距离(distance to agreement,DTA)、γ指数等参数来测量剂量验证的偏差.结果:中心点和腮腺边上点的平均绝对误差分别为2.70%和3.03%.对于测量感兴趣区域(ROI,region of interested)的相对误差的测量,90%的测量都在设定的标准(3%,3 mm)之内,对于未能达到剂量偏差和间距偏差标准的区域,结合γ分析后一般也可以得到满意的结果.结论:验证结果表明实际测量剂量分布与计划计算的剂量分布符合的相当理想.  相似文献   

5.
HW-Plan放射治疗计划系统的实验验证   总被引:2,自引:1,他引:2  
本文采用辐射胶片结合指形电离室的测量方法,借鉴AAPM 51号报告的电离室测量方法和AAMP 55报告中对放射治疗计划系统验证的推荐标准,对本实验室新研发的HW-Plan放射治疗计划系统进行了实验验证,内容包括点剂量、轴向剂量分布曲线以及等剂量曲线的验证比较.实验采用方形水模和有机玻璃模体,通过CT扫描确定模体的电子密度和模拟靶点(测量位置),采用PTW电离室测量在三野交叉共面、等中心照射条件下等中心点和偏等中心点的照射剂量,采用Kodak EDR2辐射胶片测量该条件下靶区剂量场的相对分布,并与计划系统在相同照射条件下计算的剂量场进行了验证比较,实现了对HW-Plan放射治疗计划系统验证,为计划系统的市场准入和进入临床应用提供了可靠的依据.  相似文献   

6.
目的:调强计划在用于病人治疗之前必须要进行剂量学验证,以此确保调强计划各个射野出束剂量的精确度以及测量层面平面剂量分布的精确度。本文探讨逆向调强适形放射治疗过程中的剂量学验证,分析影响剂量验证结果的因素,采取相应措施消除影响,保证IMRT治疗计划临床实施的正确性。方法:选取30例需要做验证的调强计划,将计划移植至标准水模体上生成QA计划并在TPS上计算出测量平面的剂量分布,然后将计划导入MOSAIQ,ELEKTA Precise加速器执行QA计划,用PTW729二维电离室矩阵进行平面剂量验证,收集数据经矩阵扫描软件Matri Scan读出二维电离室矩阵收集的信息传递至Veri Soft软件中,对比剂量分布图得出计划通过率。结果:PTW729二维电离室矩阵能够测量照射野的剂量分布和强度分布,能够对逆向调强计划进行准确的剂量学验证,得出平面剂量验证的通过率与MLC叶片到位精准度和计划的子野面积有明确关系。结论 :利用PTW729二维电离室矩阵可以极大地简化验证工作量,提高验证的效率。  相似文献   

7.
调强放射治疗剂量验证工具与方法   总被引:3,自引:0,他引:3  
调强放射治疗广泛应用于肿瘤的治疗,其剂量分布在三维方向上与靶区高度适形.然而调强放疗的复杂射野、数据误差、算法误差及机器误差等因素可能会引起较大的剂量偏差,从而造成实际剂量与计划剂量不符,而严重的剂量不符可能会造成不必要的辐射事故.因此鉴于患者安全角度考虑,治疗计划在执行之前通常需要进行剂量验证,以确保患者治疗计划的安全实施,避免计划外的剂量照射.目前,临床上剂量验证的工具与方法有很多,包括指形电离室工具和热释光剂量仪工具等的点剂量验证法、半导体阵列工具和电离室阵列工具以及胶片工具等的二维剂量验证法、ArcCHECK工具和Delta4工具以及第三方软件工具等的三维剂量验证法等,对临床上常见的剂量验证工具和方法进行了综述.  相似文献   

8.
目的:验证调强放射治疗的绝对剂量误差,探索影响调强放疗绝对剂量的因素及其应对措施.方法:将20例准备实施调强放疗病人的实际治疗计划,用标准水模体进行计划移植,生成验证计划并计算体模内电离室测量点的计划剂量,执行验证计划的照射,用电离室进行实际物理绝对剂量测量,计算实际测量剂量值和计划剂量值的百分相对误差.分析影响调强放疗绝对剂量误差的主要因素,采取相应改进措施,验证另80例调强放疗的绝对剂量,比较前20例与改进后80例调强放疗绝对剂量验证结果.结果:前20例调强放疗绝对剂量百分相对误差分布范围是-8.00%~5.00%,平均误差为-2.01%,标准差为3.55%.采取相应改进措施后,80例调强放疗绝对剂量百分相对误差全部在4.4%以内,分布范围缩小到-4.4%~2.5%,平均误差为-1.49%,比前20例平均误差下降25.9%,标准差为1.40%,比前20例下降60.6%.结论:分析影响调强放疗绝对剂量的因素,采取必要的应对措施,能够有效提高调强放射治疗绝对剂量的准确性.  相似文献   

9.
鼻咽癌调强适形放射治疗计划与传统计划的比较   总被引:5,自引:2,他引:5  
目的:对局部晚期鼻咽癌的调强适形放射治疗计划与传统计划进行比较。材料和方法:用计算机治疗计划系统对局部晚期的鼻咽癌患者分别制定调强适形放射治疗(IMRT),三维适形放射治疗(3D-CRT)和双侧对穿野计划,根据剂量适形度,DVH曲线,危及器官所受剂量来对这些计划进行比较。结果:IMRT计划的靶区剂量分布适形度好于其它计划,在CTV覆盖剂量相近的情况下,例如规定大于95%的CTV体积接受60Gy剂量,IMRT计划较好地保护了危及器官,与此同时,IMRT能够给予GTV较高的单次剂量,使95%的GTV体积受到至少68Gy剂量。结论:在局部晚期鼻咽癌的治疗中,与传统方法比,IMRT方法在改善肿瘤靶区高剂量覆盖的同时,也明显地改进了对危及器官的保护,并提高了治疗效率。应该进一步研究规范鼻咽癌的IMRT计划和治疗方法,以便充分发挥这种新技术的临床优势。  相似文献   

10.
目的:测量和比较柯达EDR2和XV验证胶片在不同高能射线下的光密度一剂量特性曲线。材料和方法:用多叶光栅形成的3crux3cm小野在一张胶片上制作两种胶片在不同剂量下的校准图,再用Vidar扫描仪读出各剂量水平所对应的光密度值,根据各剂量和对应的光密度值绘出光密度-剂量特性曲线(OD—Dose)。结果:EDR2的饱和剂量约为350cGy,XV胶片的饱和剂量约为150cGy。EDR2胶片的敏感度较低且对射线能量的依赖性较XV胶片小。结论:EDR2胶片更适合用于调强放射治疗的整个计划胶片验证,XV可以用于调强放射治疗的单野验证。  相似文献   

11.
The International Commission on Radiological Protection intends to revise the organ and tissue equivalent dose conversion coefficients published in various reports. For this purpose the mathematical human medical internal radiation dose (MIRD) phantoms, actually in use, have to be replaced by recently developed voxel-based phantoms. This study investigates the dosimetric consequences, especially with respect to the effective male dose, if not only a MIRD phantom is replaced by a voxel phantom, but also if the tissue compositions and the radiation transport codes are changed. This task will be resolved by systematically replacing in the mathematical ADAM/GSF exposure model, first the radiation transport code, then the tissue composition and finally the phantom anatomy, in order to arrive at the voxel-based MAX/EGS4 exposure model. The results show that the combined effect of these replacements can decrease the effective male dose by up to 25% for external exposures to photons for incident energies above 30 keV for different field geometries, mainly because of increased shielding by a heterogeneous skeleton and by the overlying adipose and muscle tissue, and also because of the positions internal organs have in a realistically designed human body compared to their positions in the mathematically constructed phantom.  相似文献   

12.
Computational anthropomorphic human phantoms are useful tools developed for the calculation of absorbed or equivalent dose to radiosensitive organs and tissues of the human body. The problem is, however, that, strictly speaking, the results can be applied only to a person who has the same anatomy as the phantom, while for a person with different body mass and/or standing height the data could be wrong. In order to improve this situation for many areas in radiological protection, this study developed 18 anthropometric standing adult human phantoms, nine models per gender, as a function of the 10th, 50th and 90th mass and height percentiles of Caucasian populations. The anthropometric target parameters for body mass, standing height and other body measures were extracted from PeopleSize, a well-known software package used in the area of ergonomics. The phantoms were developed based on the assumption of a constant body-mass index for a given mass percentile and for different heights. For a given height, increase or decrease of body mass was considered to reflect mainly the change of subcutaneous adipose tissue mass, i.e. that organ masses were not changed. Organ mass scaling as a function of height was based on information extracted from autopsy data. The methods used here were compared with those used in other studies, anatomically as well as dosimetrically. For external exposure, the results show that equivalent dose decreases with increasing body mass for organs and tissues located below the subcutaneous adipose tissue layer, such as liver, colon, stomach, etc, while for organs located at the surface, such as breasts, testes and skin, the equivalent dose increases or remains constant with increasing body mass due to weak attenuation and more scatter radiation caused by the increasing adipose tissue mass. Changes of standing height have little influence on the equivalent dose to organs and tissues from external exposure. Specific absorbed fractions (SAFs) have also been calculated with the 18 anthropometric phantoms. The results show that SAFs decrease with increasing height and increase with increasing body mass. The calculated data suggest that changes of the body mass may have a significant effect on equivalent doses, primarily for external exposure to organs and tissue located below the adipose tissue layer, while for superficial organs, for changes of height and for internal exposures the effects on equivalent dose are small to moderate.  相似文献   

13.
Many of the inadequacies of the system presently used for surveying environments containing penetrating radiation stem from the impossibility of defining a radiation parameter which is additive, measurable and closely related to peak dose equivalent in the body. Many of the present conceptual difficulties would be eliminated if surveys were made in terms of a quantity 'dose equivalent ceiling' defined as the sum of the peak dose equivalents generated by all the components of the field if each were incident normally to the front face of an anthropomorphic phantom. 'Dose equivalent ceiling' is close to the quantity measured by existing instruments, is both additive and measurable, and can be rigorously related to primary radiation field quantities. It is always greater than peak dose equivalent in the body, and would be used to define an exposure period during which a given dose equivalent could not be exceeded. The dose to specific parts of the person's body would then be estimated by personal dosimetry. Fields of low penetrating radiation could continue to be surveyed in terms of dose to specific superficial organs. Dose equivalent ceiling, which corresponds to the instrumental measurement, exceeds dose equivalent index, an indication of peak dose equivalent in the body, by a factor which can be as large as six.  相似文献   

14.
The International Commission on Radiological Protection (ICRP) has created a task group on dose calculations, which, among other objectives, should replace the currently used mathematical MIRD phantoms by voxel phantoms. Voxel phantoms are based on digital images recorded from scanning of real persons by computed tomography or magnetic resonance imaging (MRI). Compared to the mathematical MIRD phantoms, voxel phantoms are true to the natural representations of a human body. Connected to a radiation transport code, voxel phantoms serve as virtual humans for which equivalent dose to organs and tissues from exposure to ionizing radiation can be calculated. The principal database for the construction of the FAX (Female Adult voXel) phantom consisted of 151 CT images recorded from scanning of trunk and head of a female patient, whose body weight and height were close to the corresponding data recommended by the ICRP in Publication 89. All 22 organs and tissues at risk, except for the red bone marrow and the osteogenic cells on the endosteal surface of bone ('bone surface'), have been segmented manually with a technique recently developed at the Departamento de Energia Nuclear of the UFPE in Recife, Brazil. After segmentation the volumes of the organs and tissues have been adjusted to agree with the organ and tissue masses recommended by ICRP for the Reference Adult Female in Publication 89. Comparisons have been made with the organ and tissue masses of the mathematical EVA phantom, as well as with the corresponding data for other female voxel phantoms. The three-dimensional matrix of the segmented images has eventually been connected to the EGS4 Monte Carlo code. Effective dose conversion coefficients have been calculated for exposures to photons, and compared to data determined for the mathematical MIRD-type phantoms, as well as for other voxel phantoms.  相似文献   

15.
仿真人体模型是根据人体参数,用与人体组织具有相同或相近散射和吸收系数的“组织等效材料”制成的具有骨骼、肌肉、脏器的人体模型。它包括数字化虚拟人体模型、物理实体模型和二者结合的物理数学模型等3种类型。仿真体模在临床工作中应用广泛,可用于确定CT扫描方式及最佳扫描方案、优化患者的辐射剂量、设备评价及质量控制以及用于血管成像和对比剂注射方案研究。仿真体模模拟人体参数能避免不必要的辐射危害,未来在CT图像质控、设备评价、方案研究等方面前景十分可观。  相似文献   

16.
Secondary neutron fluence created during proton therapy can be a significant source of radiation exposure in organs distant from the treatment site, especially in pediatric patients. Various published studies have used computational phantoms to estimate neutron equivalent doses in proton therapy. In these simulations, whole-body patient representations were applied considering either generic whole-body phantoms or generic age- and gender-dependent phantoms. No studies to date have reported using patient-specific geometry information. The purpose of this study was to estimate the effects of patient–phantom matching when using computational pediatric phantoms. To achieve this goal, three sets of phantoms, including different ages and genders, were compared to the patients' whole-body CT. These sets consisted of pediatric age specific reference, age-adjusted reference and anatomically sculpted phantoms. The neutron equivalent dose for a subset of out-of-field organs was calculated using the GEANT4 Monte Carlo toolkit, where proton fields were used to irradiate the cranium and the spine of all phantoms and the CT-segmented patient models. The maximum neutron equivalent dose per treatment absorbed dose was calculated and found to be on the order of 0 to 5 mSv Gy(-1). The relative dose difference between each phantom and their respective CT-segmented patient model for most organs showed a dependence on how close the phantom and patient heights were matched. The weight matching was found to have much smaller impact on the dose accuracy except for very heavy patients. Analysis of relative dose difference with respect to height difference suggested that phantom sculpting has a positive effect in terms of dose accuracy as long as the patient is close to the 50th percentile height and weight. Otherwise, the benefit of sculpting was masked by inherent uncertainties, i.e. variations in organ shapes, sizes and locations.Other sources of uncertainty included errors associated with beam positioning, neutron weighting factor definition and organ segmentation. This work demonstrated the importance of hybrid phantom height matching for more accurate organ dose calculation in proton therapy and the potential limitations of reference phantoms released by regulatory bodies for radiation therapy applications.  相似文献   

17.
The voxel-based visible Chinese human (VCH) adult male phantom has offered a high-quality test bed for realistic Monte Carlo modeling in radiological dosimetry simulations. The phantom has been updated in recent effort by adding newly segmented organs, revising walled and smaller structures as well as recalibrating skeletal marrow distributions. The organ absorbed dose against external proton exposure was calculated at a voxel resolution of 2 x 2 x 2 mm(3) using the MCNPX code for incident energies from 20 MeV to 10 GeV and for six idealized irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), left-lateral (LLAT), right-lateral (RLAT), rotational (ROT) and isotropic (ISO), respectively. The effective dose on the VCH phantom was derived in compliance with the evaluation scheme for the reference male proposed in the 2007 recommendations of the International Commission on Radiological Protection (ICRP). Algorithm transitions from the revised radiation and tissue weighting factors are accountable for approximately 90% and 10% of effective dose discrepancies in proton dosimetry, respectively. Results are tabulated in terms of fluence-to-dose conversion coefficients for practical use and are compared with data from other models available in the literature. Anatomical variations between various computational phantoms lead to dose discrepancies ranging from a negligible level to 100% or more at proton energies below 200 MeV, corresponding to the spatial geometric locations of individual organs within the body. Doses show better agreement at higher energies and the deviations are mostly within 20%, to which the organ volume and mass differences should be of primary responsibility. The impact of body size on dose distributions was assessed by dosimetry of a scaled-up VCH phantom that was resized in accordance with the height and total mass of the ICRP reference man. The organ dose decreases with the directionally uniform enlargement of voxels. Potential pathways to improve the VCH phantom have also been briefly addressed. This work pertains to VCH-based systematic multi-particle dose investigations and will contribute to comparative dosimetry studies of ICRP standardized voxel phantoms in the near future.  相似文献   

18.
A Monte Carlo computational model of CT has been developed and used to investigate the effect of various physical factors on the surface air kerma length product, the peak surface air kerma, the air kerma length product within a phantom and the energy imparted. The factors investigated were the bow-tie filter and the size, shape and position of a phantom which simulates the patient. The calculations show that the surface air kerma length product and the maximum surface air kerma are mainly dependent on phantom position and decrease along the vertical axis of the CT plane as the phantom surface moves away from the isocentre along this axis. As a result, measurements using standard body dosimetry phantoms may underestimate the skin dose for real patients. This result is specially important for CT fluoroscopic procedures: for an adult patient the peak skin dose can be 37% higher than that estimated with a standard measurement on the body AAPM (American Association of Physicists in Medicine) phantom. The results also show that the energy imparted to a phantom is mainly influenced by phantom size and is nearly independent of phantom position (within 3%) and shape (up to 5% variation). However, variations of up to 30% were found for the air kerma to regions within the AAPM body phantom when it is moved vertically. This highlights the importance of calculating doses to organs taking into account their size and position within the gantry.  相似文献   

19.
The MAX (Male Adult voXel) phantom has been developed from existing segmented images of a male adult body, in order to achieve a representation as close as possible to the anatomical properties of the reference adult male specified by the ICRP. The study describes the adjustments of the soft-tissue organ masses, a new dosimetric model for the skin, a new model for skeletal dosimetry and a computational exposure model based on coupling the MAX phantom with the EGS4 Monte Carlo code. Conversion coefficients between equivalent dose to the red bone marrow as well as effective MAX dose and air-kerma free in air for external photon irradiation from the front and from the back, respectively, are presented and compared with similar data from other human phantoms.  相似文献   

20.
Anthropomorphic computational phantoms are computer models of the human body for use in the evaluation of dose distributions resulting from either internal or external radiation sources. Currently, two classes of computational phantoms have been developed and widely utilized for organ dose assessment: (1) stylized phantoms and (2) voxel phantoms which describe the human anatomy via mathematical surface equations or 3D voxel matrices, respectively. Although stylized phantoms based on mathematical equations can be very flexible in regard to making changes in organ position and geometrical shape, they are limited in their ability to fully capture the anatomic complexities of human internal anatomy. In turn, voxel phantoms have been developed through image-based segmentation and correspondingly provide much better anatomical realism in comparison to simpler stylized phantoms. However, they themselves are limited in defining organs presented in low contrast within either magnetic resonance or computed tomography images-the two major sources in voxel phantom construction. By definition, voxel phantoms are typically constructed via segmentation of transaxial images, and thus while fine anatomic features are seen in this viewing plane, slice-to-slice discontinuities become apparent in viewing the anatomy of voxel phantoms in the sagittal or coronal planes. This study introduces the concept of a hybrid computational newborn phantom that takes full advantage of the best features of both its stylized and voxel counterparts: flexibility in phantom alterations and anatomic realism. Non-uniform rational B-spline (NURBS) surfaces, a mathematical modeling tool traditionally applied to graphical animation studies, was adopted to replace the limited mathematical surface equations of stylized phantoms. A previously developed whole-body voxel phantom of the newborn female was utilized as a realistic anatomical framework for hybrid phantom construction. The construction of a hybrid phantom is performed in three steps: polygonization of the voxel phantom, organ modeling via NURBS surfaces and phantom voxelization. Two 3D graphic tools, 3D-DOCTOR and Rhinoceros, were utilized to polygonize the newborn voxel phantom and generate NURBS surfaces, while an in-house MATLAB code was used to voxelize the resulting NURBS model into a final computational phantom ready for use in Monte Carlo radiation transport calculations. A total of 126 anatomical organ and tissue models, including 38 skeletal sites and 31 cartilage sites, were described within the hybrid phantom using either NURBS or polygon surfaces. A male hybrid newborn phantom was constructed following the development of the female phantom through the replacement of female-specific organs with male-specific organs. The outer body contour and internal anatomy of the NURBS-based phantoms were adjusted to match anthropometric and reference newborn data reported by the International Commission on Radiological Protection in their Publication 89. The voxelization process was designed to accurately convert NURBS models to a voxel phantom with minimum volumetric change. A sensitivity study was additionally performed to better understand how the meshing tolerance and voxel resolution would affect volumetric changes between the hybrid-NURBS and hybrid-voxel phantoms. The male and female hybrid-NURBS phantoms were constructed in a manner so that all internal organs approached their ICRP reference masses to within 1%, with the exception of the skin (-6.5% relative error) and brain (-15.4% relative error). Both hybrid-voxel phantoms were constructed with an isotropic voxel resolution of 0.663 mm--equivalent to the ICRP 89 reference thickness of the newborn skin (dermis and epidermis). Hybrid-NURBS phantoms used to create their voxel counterpart retain the non-uniform scalability of stylized phantoms, while maintaining the anatomic realism of segmented voxel phantoms with respect to organ shape, depth and inter-organ positioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号