首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monosomy 1p36 is a subtelomeric deletion syndrome associated with congenital anomalies presumably due to haploinsufficiency of multiple genes. Although immunodeficiency has not been reported, genes encoding costimulatory molecules of the TNF receptor superfamily (TNFRSF) are within 1p36 and may be affected. In one patient with monosomy 1p36, comparative genome hybridization and fluorescence in- situ hybridization confirmed that TNFRSF member OX40 was included within the subtelomeric deletion. T cells from this patient had decreased OX40 expression after stimulation. Specific, ex vivo T cell activation through OX40 revealed enhanced proliferation, and reduced viability of patient CD4+ T cells, providing evidence for the association of monosomy 1p36 with reduced OX40 expression, and decreased OX40-induced T cell survival. These results support a role for OX40 in human immunity, and calls attention to the potential for haploinsufficiency deletions of TNFRSF costimulatory molecules in monosomy 1p36.  相似文献   

2.
BackgroundThe 17p13.3 deletion syndrome (or Miller-Dieker syndrome, MDS, MIM 247200) is characterized by lissencephaly, mental retardation and facial dysmorphism. The phenotype is attributed to haploinsufficiency of two genes present in the minimal critical region of MDS: PAFAH1B1 (formerly referred to as LIS1) and YWHAE. Whereas isolated PAFAH1B1 deletion causes lissencephaly, YWHAE is a candidate for the dysmorphic phenotype associated with MDS.ObjectiveWe describe clinical, neuroradiological and molecular data in four patients with a 17p13.3 deletion distal to PAFAH1B1 involving YWHAE.ResultsAll patients presented with mild or moderate developmental delay and pre and/or post-natal growth retardation. Patients A, B and C had neuro-imaging anomalies: leucoencephalopathy with macrocephaly (patients A and C), Chiari type 1 malformation (patient A) and paraventricular cysts (patient C). Patient B had patent ductus arteriosus and pulmonary arterial hypertension. Patient C had unilateral club foot. Patient D had enlarged Virchow Robin spaces, microcornea, and chorioretinal and lens coloboma. Array-CGH revealed de novo terminal 17p13.3 deletions for patient A and B, and showed interstitial 17p13.3 deletions of 1.4 Mb for patient C and of 0.5 Mb for patient D. In all patients, PAFAH1B1 was not deleted.ConclusionOur patients confirm that 17p deletion distal to PAFAH1B1 have a distinctive phenotype : mild mental retardation, moderate to severe growth restriction, white matter abnormalities and developmental defects including Chiari type 1 malformation and coloboma. Our patients contribute to the delineation and clinical characterization of 17p13.3 deletion distal to PAFAH1B1 and highlight the role of the region containing YWHAE in brain and eye development and in somatic growth.  相似文献   

3.
The phenotype of patients with a chromosome 1q43q44 microdeletion (OMIM; 612337) is characterized by intellectual disability with no or very limited speech, microcephaly, growth retardation, a recognizable facial phenotype, seizures, and agenesis of the corpus callosum. Comparison of patients with different microdeletions has previously identified ZBTB18 (ZNF238) as a candidate gene for the 1q43q44 microdeletion syndrome. Mutations in this gene have not yet been described. We performed exome sequencing in a patient with features of the 1q43q44 microdeletion syndrome that included short stature, microcephaly, global developmental delay, pronounced speech delay, and dysmorphic facial features. A single de novo non-sense mutation was detected, which was located in ZBTB18. This finding is consistent with an important role for haploinsufficiency of ZBTB18 in the phenotype of chromosome 1q43q44 microdeletions. The corpus callosum is abnormal in mice with a brain-specific knock-out of ZBTB18. Similarly, most (but not all) patients with the 1q43q44 microdeletion syndrome have agenesis or hypoplasia of the corpus callosum. In contrast, the patient with a ZBTB18 point mutation reported here had a structurally normal corpus callosum on brain MRI. Incomplete penetrance or haploinsufficiency of other genes from the critical region may explain the absence of corpus callosum agenesis in this patient with a ZBTB18 point mutation. The findings in this patient with a mutation in ZBTB18 will contribute to our understanding of the 1q43q44 microdeletion syndrome.  相似文献   

4.
De novo mutations in the TUBA1A gene are responsible for a wide spectrum of neuronal migration disorders, ranging from lissencephaly to perisylvian pachygyria. Recently, one family with polymicrogyria (PMG) and mutation in TUBA1A was reported. Hence, the purpose of our study was to determine the frequency of TUBA1A mutations in patients with PMG and better define clinical and imaging characteristics for TUBA1A-related PMG. We collected 95 sporadic patients with non-syndromic bilateral PMG, including 54 with perisylvian PMG and 30 PMG with additional brain abnormalities. Mutation analysis of the TUBA1A gene was performed by sequencing of PCR fragments corresponding to TUBA1A-coding sequences. Three de novo missense TUBA1A mutations were identified in three unrelated patients with PMG representing 3.1% of PMG and 10% of PMGs with complex cerebral malformations. These patients had bilateral perisylvian asymmetrical PMG with dysmorphic basal ganglia cerebellar vermian dysplasia and pontine hypoplasia. These mutations (p.Tyr161His; p.Val235Leu; p.Arg390Cys) appear distributed throughout the primary structure of the alpha-tubulin polypeptide, but their localization within the tertiary structure suggests that PMG-related mutations are likely to impact microtubule dynamics, stability and/or local interactions with partner proteins. These findings broaden the phenotypic spectrum associated with TUBA1A mutations to PMG and further emphasize that additional brain abnormalities, that is, dysmorphic basal ganglia, hypoplastic pons and cerebellar dysplasia are key features for the diagnosis of TUBA1A-related PMG.  相似文献   

5.
We report on a male patient with intra-uterine growth retardation, microcephaly, coloboma, laryngomalacia and developmental delay. Array CGH analysis revealed a 649 kb duplication on chromosome 1p34.1. Only five patients with overlapping duplications have been reported thus far. Ten known genes are located in the duplicated region, including the POMGNT1 gene encoding for O-mannose beta-1,2-N-acetylglucosaminyltransferase. This gene, mutated in muscle–eye–brain disease, might be causative for the observed phenotype in our patient.  相似文献   

6.
《Genetics in medicine》2019,21(7):1652-1656
PurposeBrain malformations caused by 17p13.3 deletions include lissencephaly with deletions of the larger Miller–Dieker syndrome region or smaller deletions of only PAFAH1B1, white matter changes, and a distinct syndrome due to deletions including YWHAE and CRK but sparing PAFAH1B1. We sought to understand the significance of 17p13.3 deletions between the YWHAE/CRK and PAFAH1B1 loci.MethodsWe analyzed the clinical features of six individuals from five families with 17p13.3 deletions between and not including YWHAE/CRK and PAFAH1B1 identified among individuals undergoing clinical chromosomal microarray testing or research genome sequencing.ResultsFive individuals from four families had multifocal white matter lesions while a sixth had a normal magnetic resonance image. A combination of our individuals and a review of those in the literature with white matter changes and deletions in this chromosomal region narrows the overlapping region for this brain phenotype to ~345 kb, including 11 RefSeq genes, with RTN4RL1 haploinsufficiency as the best candidate for causing this phenotype.ConclusionWhile previous literature has hypothesized dysmorphic features and white matter changes related to YWHAE, our cohort contributes evidence to the presence of additional genetic changes within 17p13.3 required for proper brain development.  相似文献   

7.
We report on a 28-year old woman carrying a 0.8 Mb de novo interstitial deletion in 19q13.32 detected by high-resolution array-CGH. She has severe mental retardation, tetralogy of Fallot, cleft lip and palate, deafness, megacolon and other dysmorphic features. Only a few cases of constitutional deletions located at the long arm of chromosome 19 have been previously described and this is the first report involving 19q13.32. The deleted region encompasses 15 genes, among which 3 candidate genes for genotype–phenotype correlation could be delineated. Since SLC8A2 is broadly expressed in brain and plays a potential role during embryonic development, its haploinsufficiency could possibly be related to mental retardation; as it is also expressed in aortic and intestinal smooth muscles, SLC8A2 could be related to the aortic defect of the complex cardiac malformation and to the megacolon. SAE1, a SUMO-1 activating enzyme subunit, may be related to cleft lip and palate. KPTN coding region may be a candidate gene for hearing loss. Further experimental studies on either in vivo models or diagnostic materials are needed to elucidate the role of these potential candidate genes for the phenotypic abnormalities observed in the investigated patient.  相似文献   

8.
Heterogeneous clinical and neuropsychological features, such as intellectual disability, developmental and language delay, hypotonia, and, to a lesser extent, microcephaly that is present in about the half of the reported patients, characterize the 3q29 microduplication syndrome with usually a milder phenotype compared with the corresponding 3q29 microdeletion syndrome. The duplications described so far range from 2.3?Mb to 1.6?Mb, spanning from TFRC to BDH1 genes. Here we report on two patients with overlapping interstitial duplications of the 3q29 region differing in size. Patient 1 harboured a common-seized 3q29 microduplication spanning ~1.6?Mb, while patient 2 carried a very small 3q29 microduplication of 448.8?Kb encompassing only two genes, DLG1 and BDH1. Both patients presented clinical characteristics similar to those reported in the literature in 3q29 microduplication syndrome. Interestingly, heterotopic gray matter nodules were found along the right lateral ventricle on brain MRI in patient 1, thus expanding the neuroradiological phenotype in 3q29 microduplication syndrome, while patient 2 allowed us to define with more precision the smallest region of overlap (SRO). Gene content analysis of the duplicated region suggests that gain-of-dosage of DLG1 and BDH1 may be a good candidate for the main clinical features of this syndrome.  相似文献   

9.
6q16 deletions have been described in patients with a Prader–Willi-like (PWS-like) phenotype. Recent studies have shown that certain rare single-minded 1 (SIM1) loss-of-function variants were associated with a high intra-familial risk for obesity with or without features of PWS-like syndrome. Although SIM1 seems to have a key role in the phenotype of patients carrying 6q16 deletions, some data support a contribution of other genes, such as GRIK2, to explain associated behavioural problems. We describe 15 new patients in whom de novo 6q16 deletions were characterised by comparative genomic hybridisation or single-nucleotide polymorphism (SNP) array analysis, including the first patient with fetopathological data. This fetus showed dysmorphic facial features, cerebellar and cerebral migration defects with neuronal heterotopias, and fusion of brain nuclei. The size of the deletion in the 14 living patients ranged from 1.73 to 7.84 Mb, and the fetus had the largest deletion (14 Mb). Genotype–phenotype correlations confirmed the major role for SIM1 haploinsufficiency in obesity and the PWS-like phenotype. Nevertheless, only 8 of 13 patients with SIM1 deletion exhibited obesity, in agreement with incomplete penetrance of SIM1 haploinsufficiency. This study in the largest series reported to date confirms that the PWS-like phenotype is strongly linked to 6q16.2q16.3 deletions and varies considerably in its clinical expression. The possible involvement of other genes in the 6q16.2q16.3-deletion phenotype is discussed.  相似文献   

10.
Partial monosomy 10p is a rare chromosomal aberration. Patients often show symptoms of the DiGeorge/velocardiofacial syndrome spectrum. The phenotype is the result of haploinsufficiency of at least two regions on 10p, the HDR1 region associated with hypoparathyroidism, sensorineural deafness, and renal defects (HDR syndrome) and the more proximal region DGCR2 responsible for heart defects and thymus hypoplasia/aplasia. While GATA3 was identified as the disease causing gene for HDR syndrome, no genes have been identified thus far for the symptoms associated with DGCR2 haploinsufficiency. We constructed a deletion map of partial monosomy 10p patients and narrowed the critical region DGCR2 to about 300 kb. The genomic draft sequence of this region contains only one known gene, BRUNOL3 ( NAPOR, CUGBP2, ETR3). In situ hybridization of human embryos and fetuses revealed as well as in other tissues a strong expression of BRUNOL3 in thymus during different developmental stages. BRUNOL3 appears to be an important factor for thymus development and is therefore a candidate gene for the thymus hypoplasia/aplasia seen in partial monosomy 10p patients. We did not find BRUNOL3 mutations in 92 DiGeorge syndrome-like patients without chromosomal deletions and in 8 parents with congenital heart defect children.  相似文献   

11.
12.
Wolf–Hirschhorn syndrome (WHS) is a complex genetic disorder caused by the loss of genomic material from the short arm of chromosome 4. Genotype–phenotype correlation studies indicated that the loss of genes within 4p16.3 is necessary for expression of the core features of the phenotype. Within this region, haploinsufficiency of the genes WHSC1 and LETM1 is thought to be a major contributor to the pathogenesis of WHS. We present clinical findings for three patients with relatively small (<400 kb) de novo interstitial deletions that overlap WHSC1 and LETM1. 3D facial analysis was performed for two of these patients. Based on our findings, we propose that hemizygosity of WHSC1 and LETM1 is associated with a clinical phenotype characterized by growth deficiency, feeding difficulties, and motor and speech delays. The deletion of additional genes nearby WHSC1 and LETM1 does not result in a marked increase in the severity of clinical features, arguing against their haploinsufficiency. The absence of seizures and typical WHS craniofacial findings in our cohort suggest that deletion of distinct or additional 4p16.3 genes is necessary for expression of these features. Altogether, these results show that although loss-of-function for WHSC1 and/or LETM1 contributes to some of the features of WHS, deletion of additional genes is required for the full expression of the phenotype, providing further support that WHS is a contiguous gene deletion disorder.  相似文献   

13.
We describe 5 patients ranging in age from 3 to 47 years, with karyotypic abnormalities resulting in monosomy for portion of 1p36.3, microcephaly, mental retardation, prominent forehead, deep-set eyes, depressed nasal bridge, flat midface, relative prognathism, and abnormal ears. Four patients have small hands and feet. All exhibited selfabusive behavior. Additional findings in some of the patients include brain anomalies, optic atrophy, hearing loss and skeletal deformities. The breakpoints within chromosome 1 were designated at 1p36.31 (3 cases), 1p36.32 (1 case) and 1p36.33 (1 case), Thus, the smallest region of deletion overlap is 1p36.33→1pter. Detection of the abnormal 1 relied on high resolution G-band analysis. Fluorescence in situ hybridization (FISH) utilizing a DNA probe (Oncor D1Z2) containing the repetitive sequences in distal 1p36, confirmed a deletion of one 1 homologue in all 5 cases. The abnormal 1 resulted from a de novo deletion in only one patient. The remaining patients were either confirmed (3 cases) or suspected (1 case) to have unbalanced translocations. Despite the additional genetic imbalance present in these four cases, monosomy of 1p36.33 appears to be responsible for a specific clinical phenotype. Characterization of this phenotype should assist in the clinical diagnosis of this chromosome abnormality. © 1995 Wiley-Liss, Inc.  相似文献   

14.
Mental retardation is a frequent condition that is clinically and genetically highly heterogeneous. One of the strategies used to identify new causative genes is to take advantage of balanced chromosomal rearrangements in affected patients. We characterized a de novo t(10;13) balanced translocation in a patient with severe mental retardation and major hypotonia. We found that the balanced translocation is molecularly balanced. The translocation breakpoint disrupts the coding sequence of a single gene, called ATP8A2. The ATP8A2 gene is not ubiquitously expressed, but it is highly expressed in the brain. In situ hybridization performed in mouse embryos at different stages of development with the mouse homologue confirms this observation. A total of 38 patients with a similar phenotype were screened for mutations in the ATP8A2 gene but no mutations were found. The balanced translocation identified in this patient disrupts a single candidate gene highly expressed in the brain. Although this chromosomal rearrangement could be the cause of the severe phenotype of the patient, we were not able to identify additional cases. Extensive screening in the mentally retarded population will be needed to determine if ATP8A2 haploinsufficiency or dysfunction causes a neurological phenotype in humans.  相似文献   

15.
Axenfeld-Rieger syndrome (ARS) is a heterogeneous clinical entity transmitted in an autosomal dominant manner. The main feature, Axenfeld-Rieger Anomaly (ARA), is a malformation of the anterior segment of the eye that can lead to glaucoma and impair vision. Extra-ocular defects have also been reported. Point mutations of FOXC1 and PITX2 are responsible for about 40% of the ARS cases. We describe the phenotype of a patient carrying a deletion encompassing the 4q25 locus containing PITX2 gene. This child presented with a congenital heart defect (Tetralogy of Fallot, TOF) and no signs of ARA. He is the first patient described with TOF and a complete deletion of PITX2 (arr[GRCh37]4q25(110843057-112077858)x1, involving PITX2, EGF, ELOVL6 and ENPEP) inherited from his ARS affected mother. In addition, to our knowledge, he is the first patient reported with no ocular phenotype associated with haploinsufficiency of PITX2. We compare the phenotype and genotype of this patient to those of five other patients carrying 4q25 deletions. Two of these patients were enrolled in the university hospital in Toulouse, while the other three were already documented in DECIPHER. This comparative study suggests both an incomplete penetrance of the ocular malformation pattern in patients carrying PITX2 deletions and a putative association between TOF and PITX2 haploinsufficiency.  相似文献   

16.
We identified a de novo 44.7 Kb interstitial 12p13.33 micro-deletion that involves solely the first exon of the CACNA1C (MIM 114205), using microarray-based comparative genomic hybridization (aCGH). The associated main phenotype is characterized by expressive language impairment, tremors, fine motor-skills delay, muscular hypotonia, and joint laxity. A careful comparison between the clinical and genomic characteristics between our proband and 20 previously reported patients, led us to propose CACNA1C haploinsufficiency as the main cause of both expressive language delay and motor-skills impairment. Pathogenic variants of CACNA1C have been associated to a plethora of clinical phenotypes, such as Timothy syndrome (TS, OMIM 601005), Brugada syndrome (BRGDA3, OMIM 611875) and a variety of neuropsychiatric disorders (bipolar disorder, major depression, schizophrenia, autism spectrum disorder, psychotic manifestations). In this report we describe a 12p13.33 micro-deletion involving one coding gene only, in contrast with previous studies that mostly concluded that a multi-genes deletion in the 12p13.33 sub-telomeric region is responsible of the minimum clinical phenotype of patients with 12p13.33 monosomy. Certainly, larger deletions spanning multiple Mb in 12p13.33 are responsible for more severe phenotypes, associated to a variable degree of dysmorphic features.  相似文献   

17.
18.
Microdeletion 12p13.33, though very rare, is an emerging condition associated with variable phenotype including a specific speech delay sound disorder, labelled childhood apraxia of speech (CAS), intellectual disability (ID) and neurobehavioral problems.Here we report a de novo 2.3 Mb interstitial 12p13.33-p13.32 deletion in a 5 year-old child with mild ID, speech delay, microcephaly, muscular hypotonia, and joint laxity. In contrast to previously reported patients with 12p13.33 monosomy, our patient's interstitial deletion spans the 12p13.33-12p13.32 region with the distal breakpoint within intron 12 of CACNA1C.Phenotype–genotype comparison between our case, previously reported patients, and subjects with 12p13.33 deletions led us to propose that haploinsufficiency of CACNA1C may influence the variability of the patients' phenotype, since the gene resulted disrupted or entirely deleted in the majority of reported patients. In addition, phenotypic features such as microcephaly, muscular hypotonia, and joint laxity are mainly present in patients with monosomy of 12p13.33 extending to the 12p13.32 portion. A common region of ∼300 kb, harbouring EFCAB4B and PARP11, is deleted in patients with microcephaly while a second region of ∼700 kb, including TSPAN9 and PMTR8, could be associated with muscle hypotonia and joint laxity. These data reinforce the hypothesis that multiple haploinsufficient genes and age-dependent observation may concur to generate the variable phenotype associated with 12p13.33 deletion.  相似文献   

19.
We report on seven novel patients with a submicroscopic 22q12 deletion. The common phenotype constitutes a contiguous gene deletion syndrome on chromosome 22q12.1q12.2, featuring NF2-related schwannoma of the vestibular nerve, corpus callosum agenesis and palatal defects. Combining our results with the literature, eight patients are recorded with palatal defects in association with haploinsufficiency of 22q12.1, including the MN1 gene. These observations, together with the mouse expression data and the finding of craniofacial malformations including cleft palate in a Mn1-knockout mouse model, suggest that this gene is a candidate gene for cleft palate in humans.  相似文献   

20.
Molecular analysis of the reciprocal chromosomal translocation t(12;22)(p11.2;q13.3) cosegregating with a complex type of synpolydactyly showed involvement of an alternatively spliced exon of the fibulin-1 gene (FBLN1 located in 22q13.3) and the C12orf2 (HoJ-1) gene on the short arm of chromosome 12. Investigation of the possible functional involvement of the fibulin-1 protein (FBLN1) in the observed phenotype showed that FBLN1 is expressed in the extracellular matrix (ECM) in association with the digits in the developing limb. Furthermore, fibroblasts derived from patients with the complex type of synpolydactyly displayed alterations in the level of FBLN1-D splice variant incorporated into the ECM and secreted into the conditioned culture medium. By contrast, the expression of the FBLN1-C splice variant was not perturbed in the patient fibroblasts. Based on these findings, we propose that the t(12;22) results in haploinsufficiency of the FBLN1-D variant, which could lead to the observed limb malformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号