首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The neurotransmitter glutamate activates the N-methyl-d-aspartate (NMDA), quisqualate and kainate receptors. It has been proposed, but also disputed, that local release of glutamate would play a pivotal role in cortical spreading depression (SD). We tested this hypothesis by investigating the influence of NMDA antagonists on SD, using the non-competitive NMDA antagonists ketamine, phencyclidine (PCP) and MK-801 and the competitive NMDA antagonist dl-2-amino-7-phosphonoheptanoate (2-APH), injected intraperitoneally in rats anesthetized with alfentanil. SD was elicited by cathodal DC-stimulation of the frontal cortex. SD propagation was followed using two ion-sensitive microelectrodes placed in the parietal and occipital cortex. The NMDA antagonists increased SD threshold, decreased the propagation velocity and decreased the duration of the accompanying extracellular DC, K+ and Ca2+ changes at the following doses: 40 mg/kg ketamine, 10 mg/kg PCP, 0.63 mg/kg MK-801, 10 and 40 mg/kg 2-APH. With each NMDA antagonist failure of SD propagation between both microelectrodes could be observed. SD elicitation (or propagation) was inhibited completely with 80 mg/kg ketamine, 3.1 mg/kg MK-801 and 160 mg/kg 2-APH. These NMDA antagonists have also anticonvulsant properties. None of these effects on SD were observed with high doses of other anticonvulsants such as 80 mg/kg phenytoin or 40 mg/kg diazepam. These experiments indicate that endogenous release of excitatory amino acids and their action on the NMDA receptor play an important role in the initiation, propagation and duration of SD.  相似文献   

2.
Antagonists at the N-methyl-D-aspartate (NMDA)-type glutamate receptor, such as phencyclidine (PCP) and dizocilpine (MK-801), are well-known to evoke increases in locomotor activity in adult rats and mice. However, little is known about the effects of NMDA antagonists on locomotor activity as a function of development. The present study examined locomotor responses to PCP or MK-801 in male rats of varying ages and found that prepubertal rats were more sensitive to the locomotor-elevating effects of PCP (1.5 mg/kg and 3. 0 mg/kg, s.c.) than were adults. Locomotor responses to MK-801 (0.1 and 0.2 mg/kg, s.c.) were not dependent on age. The age-dependent response to PCP may be related to developmental events in the motor cortex, since more Fos-immunoreactive neurons were observed in the motor cortex of prepubertal animals after PCP administration relative to adult animals. An opposite pattern of age-dependent Fos responses was observed in the posterior retrosplenial cortex. The results suggest that locomotor responses to NMDA antagonists can be influenced in an age- and drug-dependent manner and that maturational events in the motor cortex may modify responses to PCP.  相似文献   

3.
N-methyl-D-aspartate (NMDA) glutamate (Glu) receptor antagonists (eg MK-801, ketamine, phencyclidine [PCP]) injure cerebrocortical neurons in the posterior cingulate and retrosplenial cortex (PC/RSC). We have proposed that the neurotoxic action of these agents is mediated in part by a complex polysynaptic mechanism involving an interference in GABAergic inhibition resulting in excessive release of acetylcholine (ACh). Previously we have found that the systemic injection of GABAergic agents and alpha2-adrenergic agonists can block this neurotoxicity. In the present study we tested the hypothesis that NMDA antagonists trigger release of ACh in PC/RSC and that this action of NMDA antagonists is suppressed by GABAergic agents or alpha2-adrenergic agonists. The effect of MK-801 and ketamine on PC/RSC ACh output (and the ability of pentobarbital, diazepam and clonidine to modify MK-801-induced ACh release) was studied in adult female rats using in vivo microdialysis. Both MK-801 and ketamine caused a significant rise in PC/RSC ACh output compared to basal levels. Pentobarbital, diazepam and clonidine suppressed MK-801's effect on ACh release. Exploratory studies indicated that the site of action of these agents was outside of the PC/RSC. The microdialysis results are consistent with several aspects of the circuitry proposed to mediate the neurotoxic action of NMDA antagonists.  相似文献   

4.
MK-801 and ketamine are noncompetitive N-methyl-D-aspartate (NMDA) receptor blockers that decrease brain injury in animal models of focal and global ischemia. Recent reports, however, suggested that MK-801 itself can damage neurons. Here we show that MK-801 (0.1 to 5.0 mg/kg) and ketamine (40 to 100 mg/kg) typically induce heat shock protein HSP72 mainly in layer 3 neurons of the posterior cingulate and retrosplenial cortex of the rat. These HSP72-immunoreactive neurons contain abnormal cytoplasmic vacuoles visualized by electron microscopy. The HSP72 immunoreactivity is maximal at 24 hours with 1.0-mg/kg doses of MK-801 and disappears by 2 weeks. Based on these data, we propose: (1) MK-801 and ketamine injure selected neurons, which express HSP72 in response to that injury. (2) Since HSP72 is induced for 1 to 2 weeks, the prolonged psychological side effects of MK-801, ketamine, phencyclidine, and related drugs could be related to this injury. (3) The neuroprotective effect of MK-801 is probably not related to HSP72 induction. (4) HSP72 immunocytochemistry is useful for studying nonlethal neuronal injury from a wide variety of brain insults.  相似文献   

5.
In the present study, we investigated the effects of ceruletide (CL), a cholecystokinin analog, on the neurochemical response to non-competitive N-methyl-D-aspartate (NMDA) receptor antagonists, phencyclidine (PCP) and MK-801, of the dopaminergic neuron systems in the discrete regions of the rat brain. Systemically administered PCP (7.5 mg/kg, i.p.) or MK-801 (1.0 mg/kg, i.p.) produced significant increases in the tissue contents of dopamine metabolite, homovanillic acid (HVA), in the prefrontal cortex, the nucleus accumbens and the olfactory tubercle but not in the nucleus caudatus putamen after 60 min. The effects of NMDA receptor antagonists in the nucleus accumbens and the prefrontal cortex were partially antagonized by pretreatment with CL (80 and 400 micrograms/kg, i.p., at 60 min prior to the drugs). While CL alone decreased the dopaminergic metabolism only in the nigrostriatal pathways in naive rats, the present results indicated that CL also attenuates the activities of the meso-limbic and meso-cortical dopaminergic neuron systems when these are enhanced by either PCP or MK-801.  相似文献   

6.
7.
N-Methyl-D-aspartate (NMDA) receptor antagonists inhibit both the kindling process and the expression of seizures in previously kindled adult rats. Experimental seizures are more readily produced in infant than adult rats, possibly related to a developmental predominance of NMDA receptor-mediated effects. If so, reduction of seizure susceptibility by NMDA receptor antagonists should be more dramatic in infant rats than in adults. We studied the effect of ketamine and MK-801 on kindling epileptogenesis and seizure expression in 15-day-old rats. Ketamine (5, 10, and 20 mg/kg) and MK-801 (0.033 and 0.1 mg/kg) both significantly increased the latency to stage 3 or 4 seizures in dose-dependent fashion. These results were similar to those found in adults but occurred at slightly lower doses. Ketamine 20 mg/kg and MK-801 0.33 mg/kg totally eliminated clinical seizure activity and nearly abolished afterdischarge in previously kindled infant rats, effects exceeding those reported in adults using doses up to 6 times as great. These results support the hypotheses that NMDA receptor-mediated neurotransmission plays an important role in seizure production and the increased seizure susceptibility in immature brain and raise the possibility that NMDA receptor antagonists could be useful antiepilepsy agents in young children.  相似文献   

8.
Three non-competitive antagonists (MK-801, TCP, PCP) and one competitive antagonist (CPP) of N-methyl-D-aspartate (NMDA) receptors, were compared for their ability to antagonize neurotoxic actions of NMDA injected into the brains of 7-day-old rats. Unilateral intracerebral injection of NMDA (25 nmol/0.5 microliters) into the corpus striatum of pups consistently produced severe confluent neuronal necrosis in the striatum extending into the dorsal hippocampus and overlying neocortex. The distribution of damage corresponded to the topography of NMDA type glutamate receptors in the vulnerable regions. With this lesion in developing brain, the weight of the injected hemisphere 5 days later can be used as a quantitative measure of brain injury. Intraperitoneal administration of MK-801 (0.02-42.0 mumol/kg), TCP (3.5-54.0 mumol/kg), PCP (1.0-41.0 mumol/kg), and CPP (1.0-60.0 mumol/kg) 15 min after NMDA injection had prominent dose-dependent neuroprotective effects. MK-801 was 14 times more potent than other compounds tested and the 50% protective dose (PD50, that dose which reduced damage by 50% relative to untreated NMDA-injected controls) was 0.63 mumol/kg. Corresponding values for CPP, PCP, and TCP were 8.84, 10.85, and 24.05 mumol/kg respectively. The lowest dose of MK-801 that provided significant protection was 0.2 mumol/kg (0.04 mg/kg, 37.9 +/- 4.6% protection). Four mumol/kg (0.8 mg/kg) of MK-801 completely protected against NMDA-mediated damage. The study provides the first direct in vivo comparison of the neuroprotective abilities of these compounds. Systemic administrations of MK-801, TCP, PCP, and CPP all limit NMDA-induced neuronal injury in this model. The susceptibility of the immature brain to the neurotoxicity of NMDA provides a sensitive, reproducible, and quantitative in vivo system for comparing the effectiveness of drugs with protective actions against excitotoxic neuronal injury.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Several studies have shown that the systemic administration of a variety of N-methyl-D-aspartate (NMDA) receptor antagonists can block the development or expression of conditioned place preference (CPP) induced by rewarding drugs such as morphine. In the present study, we examined the effects of different doses of two non-competitive NMDA receptor antagonists, MK-801 (0.1, 0.2 and 0.3 mg/kg) and memantine (2.5, 5, 10, 20 and 40 mg/kg), in CPP induced by 40 mg/kg of morphine in male mice. The CPP was carried out with an unbiased procedure in terms of initial spontaneous preference. Animals received the different doses of drugs in the conditioning sessions. MK-801 and memantine, at all doses used, produced neither place preference nor place aversion, but the higher doses of memantine (20 and 40 mg/kg) were able to completely block morphine-induced CPP. The present data show that the NMDA receptor antagonists MK-801 and memantine have no reinforcing properties but memantine is capable of preventing the acquisition of morphine-induced CPP. These results suggest that the development of morphine-induced CPP may be closely related to NMDA receptors and that the glutamatergic system can modulate opiate reward.  相似文献   

10.
We examined the effect of blockade of N-methyl-D-aspartate (NMDA) and non-NMDA subtype glutamate receptors on anoxic depolarization (AD) and cortical spreading depression (CSD). [K+]e and the direct current (DC) potential were measured with microelectrodes in the cerebral cortex of barbiturate-anesthetized rats. NMDA blockade was achieved by injection of (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate [MK-801; 3 and 10 mg/kg] or amino-7-phosphonoheptanoate (APH; 4.5 and 10 mg/kg). Non-NMDA receptor blockade was achieved by injection of 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(F)quinoxaline (NBQX; 10 and 20 mg/kg). MK-801 and APH blocked CSD, while NBQX did not. In control rats, the latency from circulatory arrest to AD was 2.1 +/- 0.1 min, while the amplitude of the DC shift was 21 +/- 1 mV, and [K+]e increased to 50 +/- 6 mM. All variables remained unchanged in animals treated with MK-801, APH, or NBQX. Finally, MK-801 (14 mg/kg) and NBQX (40 mg/kg) were given in combination to examine the effect of total glutamate receptor blockade on AD. This combination slightly accelerated the onset of AD, probably owing to circulatory failure. In conclusion, AD was unaffected by glutamate receptor blockade. In contrast, NMDA receptors play a crucial role for CSD.  相似文献   

11.
NoncompetitiveN-methyl- -aspartate (NMDA) receptor antagonists, including ketamine and phencyclidine (PCP), produce abnormal intracellular vacuoles in posterior cingulate and retrosplenial cortical neurons in the rat. Ketamine also induces 70-kDa heat shock protein (HSP70) expression in pyramidal neurons in the posterior cingulate and retrosplenial cortex and, as shown by this study, activates microglia in the retrosplenial cortex of the rat. Whereas HSP70 protein expression was induced with ketamine doses of 40 mg/kg (ip) and higher, doses of 80 mg/kg and higher were required to activate microglia. HSP70-positive neurons were observed in 30- to 90-day-old rats but not in younger, 10- to 20-day-old animals following ketamine (80 mg/kg, ip). Pretreatment with the antipsychotic drug haloperidol at doses of 1.0 mg/kg and above abolished all HSP70 immunostaining produced by ketamine (80 mg/kg). However, a single dose of haloperidol (5 mg/kg, im) did not decrease the number of microglia activated in retrosplenial cortex by ketamine (80–140 mg/kg). Similarly, PCP (10 and 50 mg/kg, ip)-induced microglial activation in the posterior cingulate and retrosplenial cortex of adult rats was not blocked by haloperidol (10 mg/kg, im, 1 h prior to PCP). These results suggest that ketamine and PCP injure neurons in the posterior cingulate and retrosplenial cortex of adult rats. Though haloperidol may afford some protection against this injury since it inhibits induction of HSP70 expression, the failure to prevent microglial activation suggests that single doses of haloperidol do not completely protect neurons from NMDA antagonist toxicity.  相似文献   

12.
The neuroprotective effects of the NMDA antagonists MK-801 and ketamine were analyzed in a mutant strain of Han-Wistar rats which develop neurodegeneration in the hippocampus and cerebellum. Previous experiments have shown that the progressive neuronal degeneration observed in this mutant may be the result of a dysfunctional glutamatergic system. For MK-801 studies, mutants were injected in a chronic paradigm with (+)MK-801 or its weaker acting isomer (-)MK-801 at a dose of 1 mg/kg. Ketamine studies consisted of both acute (50 mg/kg once) and chronic (10 mg/kg multiple times) injection paradigms. MK-801-treated mutants exhibited longer life spans (8-23%) compared to saline-injected mutants. Ketamine-injected mutants in both paradigms also lived slightly longer (6-9%) than the saline mutants. Motor skill deterioration was monitored in an open-field test, and after 50 days of age the MK-801 and ketamine mutants displayed over 20% greater motor skill activity than the saline mutants. In the cerebellum, mutants treated with ketamine and both forms of MK-801 had 10-20% more Purkinje cells surviving at 55 days than the saline mutants. Further, the density of CA3c pyramidal hippocampal neurons in ketamine and MK-801-treated mutants as compared to saline mutants appeared to be greater upon qualitative analysis. This study shows that these mutants derive some protective effects from the NMDA antagonists MK-801 and ketamine, confirming glutamate-induced excitotoxicity as a possible cause of neuronal degeneration in this mutant strain of rat.  相似文献   

13.
Effects of MK-801 and ketamine, N-methyl-D-aspartate (NMDA) receptor blockers, on cocaine-stimulated locomotor activity were investigated in male Swiss-Webster mice. MK-801 (0.25, 0.5, 1.0 and 2.5 mg/kg), ketamine (10, 25 and 50 mg/kg) or saline was injected 20 min before cocaine (5, 10 and 20 mg/kg i.p.). Locomotor activity was measured for 30 min immediately following cocaine treatment. All doses of the drugs were also tested for ability to depress or stimulate locomotor activity in the naive (no cocaine-treated) mice. Cocaine produced a dose-dependent increase in locomotor activity that was blocked dose-dependently by MK-801 or ketamine. The blockade by MK-801 was more prominent than by ketamine. Our results may suggest that cocaine-induced locomotor stimulation in mice is modulated via NMDA receptor mediated mechanisms.  相似文献   

14.
The non-competitive NMDA receptor antagonists, PCP (phencyclidine), MK801, and ketamine produce psychosis in humans and abnormal vacuoles in posterior cingulate and retrosplenial rat cortical neurons. We show that PCP (> or = 5 mg/kg), MK801 (> or = 0.1 mg/kg), and ketamine (> 20 mg/kg) induce hsp70 mRNA and HSP70 heat shock protein in these vacuolated, injured neurons, and PCP also induces hsp70 in injured neocortical, piriform, and amygdala neurons. The PCP, MK801, and ketamine drug induced injury occurs in 30 day and older rats, but not in 0-20 day old rats, and is prevented by prior administration of the antipsychotic drugs haloperidol and rimcazole. Since haloperidol and rimcazole block dopamine and sigma receptors, and since M1 muscarinic cholinergic receptor antagonists also prevent the injury produced by PCP, MK801, and ketamine, future studies will be needed to determine whether dopamine, sigma, M1, or other receptors mediate the injury.  相似文献   

15.
The phencyclidine (PCP) derivative N-[1-(2-thienyl)cyclohexyl]-piperidine (3H-TCP) was used to label in vivo the N-methyl-D-aspartate (NMDA) receptor-associated ionic channel in the mouse brain. After the injection of a tracer dose of 3H-TCP, a spread labeling throughout the brain was observed, but was the highest in the cerebellum. Preadministration of unlabeled TCP (30 mg/kg) resulted in a 90% reduction of 3H-TCP binding. PCP, TCP, MK-801, dexoxadrol, ketamine, and SKF 10,047 isomers dose-dependently prevented the in vivo 3H-TCP binding. ID50 determined in the cerebrum and the cerebellum were respectively correlated with K0.5 for 3H TCP high (rat cortex) and low affinity (rat cerebellum) sites in vitro. The pharmacological specificity of the 3H-TCP binding site in the cerebellum was significantly different from that in the cerebrum. ID50 values were generally higher than in the cerebrum and, particularly, MK-801, the most potent drug in the cerebrum, was without significant effect in the cerebellum, at any time and at doses as high as 30 mg/kg. N-[1-(2-benzo(b) thiophenyl)cyclohexyl]piperidine (BTCP), desipramine, and atropine showed a more efficient prevention of 3H-TCP binding in the cerebellum than in the cerebrum. The prevention of the binding by TCP or PCP, at doses close to their ID50 values, was rapid and then decreased slowly. The effect of MK-801 was long-lasting. This study confirm previous in vitro studies: 3H-TCP is an efficient tool for the labeling of the NMDA receptor-associated ionic channel.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Subanesthetic doses of NMDA receptor antagonists induce positive, negative and cognitive schizophrenia-like symptoms in healthy humans and precipitate psychotic reactions in stabilized schizophrenic patients. These findings suggest that defining neurobiologic effects induced by NMDA antagonists could guide the formulation of experimental models relevant to the pathophysiology of schizophrenia and antipsychotic drug action. Accordingly, the effects of subanesthetic doses of the non-competitive NMDA antagonists ketamine and MK-801 were examined on regional brain [14C]-2-deoxyglucose (2-DG) uptake in rats. The effects of these drugs were compared to those of amphetamine, in order to assess the potential role of generalized behavioral arousal, motor activity and dopamine release in brain metabolic responses to the NMDA antagonists. Subanesthetic doses of MK-801 and ketamine induced identical alterations in patterns of 2-DG uptake. The most pronounced increases in 2-DG for both NMDA antagonists were in the hippocampal formation and limbic cortical regions. By contrast, amphetamine treatment did not increase 2-DG uptake in these regions. In isocortical regions, ketamine and MK-801 reduced uptake in layers 3 and 4, creating a striking shift in the laminar pattern of 2-DG uptake in comparison to control conditions. After amphetamine, the fundamental laminar pattern of isocortical labeling was similar to saline-treated rats. Administration of ketamine and MK-801 decreased 2-DG uptake in the medial geniculate and inferior colliculus, whereas amphetamine tended to increase uptake in these regions. Since ketamine induced similar effects on regional 2-DG uptake as observed for the selective antagonists MK-801, the effects of ketamine are likely related to NMDA antagonistic properties of the drug. The distinct differences in brain 2-DG uptake induced by amphetamine and NMDA antagonists indicate that generalized behavioral arousal, and increased locomotor activity mediated by dopamine release, are not sufficient to account for the alterations in brain metabolic patterns induced by ketamine and MK-801. Thus, the dramatic alteration in regional 2-DG uptake induced by ketamine and MK-801 reflects a state selectively induced by reduced NMDA receptor function.  相似文献   

17.
18.
Acute administration of morphine (10 mg/kg) to rats elicited an increase in locomotion that became sensitized upon repeated treatment over 14 days. Administration of the noncompetitive N-methyl-D-aspartate receptor (NMDA) antagonist MK-801 (0.1 or 0.25 mg/kg) prior to each morphine injection prevented the development of behavioral sensitization to morphine, an effect that persisted even after a 7-day withdrawal from repeated treatment. Sensitization was also prevented by coadministration of the competitive NMDA receptor antagonist CGS 19755 (10 mg/kg). In contrast, acute pretreatment with MK-801 did not alter the response of sensitized rats to morphine challenge, indicating that MK-801 does not prevent the expression of sensitization. When administered alone, MK-801 produced stereotyped movements at moderate doses (0.25 rng/kg) and horizontal locomotion at higher- doses, (0.5 mg/kg). Repeated administration of 0.25 mg/kg MK-801 elicited sensitization to its own locomotor stimulatory effects, such that this dose became capable of eliciting horizontal locomotion. Sensitization was not seen during repeated administration of 0.1 mg/kg MK-801 or 10 mg/kg CGS 19755, although both of these pretreatments did produce a sensitized response to subsequent challenge with 0.25 mg/kg MK-801. This effect was enhanced by coadministration of morphine, even though repeated administration of morphine alone failed to sensitize rats to MK-801 challenge. These results suggest a complex interplay between NMDA and opioid receptors, such that NMDA antagonists prevent morphine sensitization while morphine enhances the ability of NMDA antagonists to elicit sensitization to their own locomotor stimulatory effects. © 1994 Wiley-Liss, Inc.  相似文献   

19.
Although treatment with N-methyl-D-aspartate (NMDA) receptor antagonists reduce neuronal loss after cerebral infarction and brain trauma in laboratory animals, there is little data concerning the effects of these drugs on behavioral recovery. Because NMDA receptor antagonists impede certain kinds of learning, and because motor recovery after sensorimotor cortex injury in the rat is dependent on post-lesion experience, we hypothesized that treatment with MK-801 after focal brain injury would be detrimental. Groups of rats were first trained to traverse a narrow elevated beam and then subjected a right sensorimotor cortex suction-ablation lesion. In the first experiment, 24 h later, each rat received a single dose of either saline or the NMDA receptor antagonist MK-801 (0.5, 1.0, or 2.0 mg/kg). Beam-walking recovery was measured over the next 12 days. In a second experiment, rats were given 3 doses of MK-801 (0.5 mg/kg) at 24 h intervals beginning 24 h after cortex injury. In a third experiment, lesioned and sham-operated rats were allowed to recover for 12 days and then given MK-801 (0.5 mg/kg). Despite obvious behavioral effects of the drug, there was no overall difference in beam-walking performances among the treatment groups in any of the experiments. If 're-learning' is involved in motor recovery after cortex injury, the present results suggest that the process is not susceptible to permanent disruption by the early or late administration of an NMDA receptor antagonist.  相似文献   

20.
Ketamine and MK-801 are phencyclidine (PCP)-like noncompetitive antagonists of the N-methyl-D-aspartate (NMDA) receptor that produce a use-dependent blockade of the NMDA receptor-coupled channel. Recent studies have suggested that the binding properties of these drugs to the NMDA receptor in-vitro are different. In the present study, the effects of ketamine and MK-801 on the induction of long-term potentiation (LTP) were compared at perforant path--granule cell synapses in anaesthetized rats. LTP was observed in animals treated with either saline or MK-801, but not in those treated with ketamine. These results reveal that ketamine and MK-801 differentially modulate the induction of LTP, and we propose that this differential modulation may be related to the different binding properties of the drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号